Summary

富集分枝杆菌的天然和重组细胞外囊泡

Published: December 08, 2023
doi:

Summary

该方案详细介绍了从耻垢分枝杆菌(Msm)的无轴培养物中富集天然分枝杆菌细胞外囊泡(mEV),以及如何设计和富集含有mCherry(红色荧光报告基因)的重组MsmEV。最后,通过富集含有结核分枝杆菌EsxA蛋白的MsmEVs验证了新方法。

Abstract

大多数细菌,包括分枝杆菌,都会产生细胞外囊泡 (EV)。由于细菌 EV (bEV) 包含细胞成分的子集,包括代谢物、脂质、蛋白质和核酸,因此一些小组已经评估了 bEV 的天然或重组版本作为亚单位候选疫苗的保护效力。与天然 EV 不同,重组 EV 经过分子工程改造,含有一种或多种感兴趣的免疫原。在过去十年中,不同的团队探索了生成重组bEV的不同方法。然而,在这里,我们报告了分枝杆菌中重组分枝杆菌 EV (mEV) 的设计、构建和富集。为此,我们使用 耻垢分枝 杆菌(Msm),一种无毒的土壤分枝杆菌作为模型系统。我们首先描述了 Msm 原生 EV 的产生和丰富。然后,我们描述了重组 mEV 的设计和构建,这些重组 mEV 含有 mCherry(一种红色荧光报告蛋白)或 EsxA (Esat-6)(一种突出的 结核分枝杆菌免疫原)。我们通过将 mCherry 和 EsxA N 端分别与小 Msm 蛋白 Cfp-29 的 C 端融合来实现这一点。 Cfp-29 是为数不多的大量存在的 MsmEV 蛋白之一。从 Msm 生成和富集重组 mEV 的协议与生成和富集 Msm 的天然 EV 的协议相同。

Introduction

尽管开发和管理了针对传染病的各种疫苗,但直到今天,~30% 的人类死亡仍然发生在传染病1.在结核病 (TB) 疫苗 – 卡介苗 (BCG) 出现之前,结核病是头号杀手(~10,000 至 15,000/100,000 人口)2。随着卡介苗的实施以及一线和二线抗结核药物的易得性,到 2022 年,结核病相关死亡人数已大幅下降到 ~100 万/年(即 ~15-20/100,000 人口1)。然而,在世界结核病流行人群中,结核病相关死亡人数仍为~100-550/100,000人口1。虽然专家们认识到导致这些数字出现偏差的几个原因,但卡介苗介导的保护甚至不会持续到生命的头十年,这似乎是突出的原因3,4,5,6,7。因此,鉴于联合国更新的“可持续发展目标”和世卫组织的“终结结核病战略”,全球正在共同努力开发一种比卡介苗更优越的疫苗替代品,这种疫苗可能提供终生预防结核病的保护。

为了实现这一目标,几个小组目前正在评估改良/重组卡介苗菌株、除卡介苗以外的非致病性和减毒分枝杆菌物种以及候选亚基8、9、10、11、12、13、14、15、16、1718.通常,亚单位疫苗是脂质体,选择性地装载了少量纯化 (~1-6) 病原体的全长或截短的免疫原性蛋白。然而,由于它们虚假地折叠成非天然构象和/或负载蛋白质之间的随机非功能性相互作用,亚基通常缺乏天然和密切相关的表位,因此无法充分启动免疫系统14,19,20

因此,细菌的细胞外囊泡 (EV) 作为有前途的替代品 21,22,23,24,25,26 已经加快了步伐。通常,细菌 EV (bEV) 包含其细胞成分的一个子集,包括核酸、脂质和数百种代谢物和蛋白质的某些部分27,28。与人工加载一些纯化蛋白质的脂质体不同,bEV 包含数百种自然加载的天然折叠蛋白质,具有更好的启动免疫系统的倾向,尤其是在没有佐剂和 Toll 样受体 (TLR) 激动剂的增强/帮助的情况下27,28,29。正是在这项研究中,我们和其他人探索了分枝杆菌 EV 作为 BCG30 潜在亚基增强剂的效用。尽管人们担心 bEV 缺乏均匀的抗原载量,但来自减毒脑膜炎奈瑟菌的 EV 已成功保护人类免受血清群 B 脑膜炎球菌的侵害31,32

至少从理论上讲,能够很好地促进卡介苗的最佳电动汽车是从病原菌中富集的电动汽车。然而,富集致病分枝杆菌产生的 EV 是昂贵、耗时且有风险的。此外,病原体产生的 EV 可能毒性大于保护性。鉴于潜在风险,在这里,我们报告了一种经过充分测试的方案,用于富集由轴向生长的 Msm(一种无毒分枝杆菌)产生的 EV。

然而,尽管编码了几种病原体蛋白直系同源物,但无毒分枝杆菌缺乏几种疫苗抗原/致病蛋白表位,这些抗原/致病蛋白表位是充分启动免疫系统以提供保护所必需的33。因此,我们还探索了通过分子工程构建和富集 Msm 的重组 EV,使得在 Msm 中表达和翻译的任何目标致病蛋白的很大一部分必须到达其 EV。我们假设,当与感兴趣的蛋白质融合时,Msm EVs 的前 10 种丰度蛋白质中的一种或多种将有助于这种易位。

当我们开始在实验室中标准化分枝杆菌 EV (mEV) 的富集时,2011 年,Prados-Rosales 等人首次报道了 mEV 在体外30 的可视化和富集。后来,在 2014 年,同一小组发布了他们 2011 年方法34 的修改版本。2015 年,Lee 等人还报道了一种独立的标准化方法,用于再次从分枝杆菌 35 的 axenic 培养物中富集mEV。结合两种方案 34,35 并在彻底标准化后合并我们的一些修改,我们在这里描述了一种方案该方案有助于从分枝杆菌36 的 axenic 培养物中常规富集 mEV。

在这里,我们特别详细介绍了 Msm 特异性 EV 的富集,这是已发表的方案36 的扩展,用于富集分枝杆菌 EV。我们还详细介绍了如何构建含有 mCherry 蛋白(作为红色荧光报告基因)和 EsxA (Esat-6)37,38,39 的重组 mEV (R-mEV),这是一种主要免疫原和结核分枝杆菌的潜在亚基疫苗原。富集 R-mEV 的协议与我们描述的从 Msm 富集天然 EV 的协议相同。

Protocol

1. 耻垢分枝杆菌、 大肠杆菌及其衍生物的生长条件 媒体Middlebrook 7H9 液体肉汤通过在微波炉中将玻璃烧杯中所需体积的双蒸水 (ddw) 预热至 ~45-50 oC 来制备 20% 吐温-80 储备溶液,使用适当的量筒加入所需体积的吐温-80,并在小型磁力搅拌器上连续搅拌,使 20% 吐温-80 进入均匀溶液。通过0.22um处置过滤器过滤20%吐温-80?…

Representative Results

我们使用 耻垢分枝杆 菌 (Msm) 作为模型分枝杆菌来证明天然和重组 mEV (R-mEV) 的富集。这种示意性总结的 mEVs 富集方案(图 1)也适用于 Msm 的 R-mEV 和 Mtb 的天然 EV 的富集(稍作修改,如 1.2 的方案说明)。富集的mEV的可视化需要在透射电子显微镜下对它们进行负染色36 (图2A)。通常,Msm 特异性 EV 在 13 mL 6-60% 密度梯度的<…

Discussion

由于开发一种优于并可以替代卡介苗的新型结核病疫苗仍然是一个艰巨的挑战,作为一种替代方案,一些小组正在寻求发现不同的亚单位结核病疫苗,这些疫苗可以提高卡介苗的效力并延长其保护期48,49。鉴于细菌 EV (bEV) 作为潜在亚基和天然佐剂50,51 越来越受到关注持续富集足够数量的 mEV 用于其下游测…

Declarações

The authors have nothing to disclose.

Acknowledgements

作者衷心感谢 Sarah M. Fortune 教授慷慨分享 耻垢分 枝杆菌mc 2155 股票。他们还感谢施维雅医学艺术 (smart.servier.com) 为 图 1 提供了一些基本元素。他们衷心感谢实验室其他成员在长期使用培养箱振荡器、离心机和超速离心机进行 mEV 富集期间对患者调整的支持。他们还感谢实验室助理 Surjeet Yadav 先生始终确保必要的玻璃器皿和耗材始终可用且方便。最后,他们感谢 THSTI 的行政、采购和财务团队在项目无缝执行方面的持续支持和帮助。

Materials

A2 type Biosafety Cabinet Thermo Fisher Scientific, USA 1300 series
Bench top Centrifuge Eppendorf, USA 5810 R
BstB1, HindIII, HpaI NEB, USA NEB
Cell densitometer GE Healthcare, USA Ultraspec 10
Citric Acid Sigma-Aldrich, Merck, USA Sigma Aldrich
Dibasic Potassium Phosphate Sigma-Aldrich, Merck, USA Sigma Aldrich
Double Distilled Water Merck, USA ~18.2 MW/cm @ 25 oC
Electroporation cuvettes Bio-Rad, USA 2 mm
Electroporator Bio-Rad, USA Electroporator
EsxA-specific Ab Abcam, UK Rabbit polyclonal
Ferric Ammonium Citrate Sigma-Aldrich, Merck, USA Sigma Aldrich
Floor model centrifuge Thermo Fisher Scientific, USA Sorvall RC6 plus
Glassware Borosil, INDIA 1 L Erlenmeyer flasks
Glycerol Sigma-Aldrich, Merck, USA Sigma Aldrich
HEPES and Sodium Chloride Sigma-Aldrich, Merck, USA Sigma Aldrich
Incubator shakers Thermo Fisher Scientific, USA MaxQ 6000 & 8000
L-Asparagine Sigma-Aldrich, Merck, USA Sigma Aldrich
Luria Bertani Broth and Agar, Miller Hi Media, INDIA Hi Media
Magnesium Sulfate Heptahydrate Sigma-Aldrich, Merck, USA Sigma Aldrich
Magnetic stirrer Tarsons, INDIA Tarsons
mCherry-specific Ab Abcam, UK Rabbit monoclonal
Microwave LG, INDIA MC3286BLT
Middlebrook 7H9 Broth BD, USA Difco Middlebrook 7H9 Broth
Middlebrook ADC enrichment BD, USA BBL Middlebrook ADC enrichment
Nanodrop Thermo Fisher Scientific, USA Spectronic 200 UV-Vis
NEB5a NEB, USA a derivative of DH5a
Optiprep (Iodixanol) Merck, USA Available as 60% stock solution (in water)
PCR purification kit Hi Media, INDIA Hi Media
pH Meter Mettler Toledo, USA Mettler Toledo
Plasmid DNA mini kit Hi Media, INDIA Hi Media
Plate incubator Thermo Fisher Scientific, USA New Series
Plasmid pMV261 Addgene, USA *
*The   plasmid   is   no   more available in this plasmid bank
Shuttle vector
Proof-reading DNA Polymerase Thermo Fisher Scientific, USA Phusion DNA Plus Polymerase
Q5 Proof-reading DNA Polymerase NEB, USA NEB
Refrigerated circulating water bath Thermo Fisher Scientific, USA R20
Middlebrock 7H11 Agar base BD, USA BBL Seven H11 Agar base
SOC broth Hi Media, INDIA Hi Media
Sodium Hydroxide Sigma-Aldrich, Merck, USA Sigma Aldrich
T4 DNA Ligase NEB, USA NEB
Tween-80 Sigma-Aldrich, Merck, USA Sigma Aldrich
Ultracentrifuge Beckman Coulter, USA Optima L100K
Ultracentrifuge tubes – 14 mL Beckman Coulter, USA Polyallomer type – ultra clear type in SW40Ti rotor
Ultracentrifuge tubes – 38 mL Beckman Coulter, USA Polypropylene type– cloudy type for SW28 rotor
Ultrasonics cleaning waterbath sonicator Thermo Fisher Scientific, USA Sonicator – bench top model
0.22 µm Disposable filters Thermo Fisher Scientific, USA Nunc-Nalgene
30-kDa Centricon concentrators Merck, USA Amicon Ultra centrifugal filters – Millipore
3X FLAG antibody Sigma-Aldrich, Merck, USA Sigma Aldrich
400 mL Centrifuge bottles Thermo Fisher Scientific, USA Nunc-Nalgene
50 mL Centrifuge tubes Corning, USA Sterile, pre-packed
Bacteria
Strain
Escherichia coli NEB, USA NEB 5-alpha (a derivative of DH5α).
Msm expressing cfp29::mCherry This study MC2 155
Msm expressing cfp29::esxA This study MC2 155
Msm expressing cfp29::esxA::3X FLAG This study MC2 155
Mycobacterium smegmatis (Msm) Prof. Sarah M. Fortune, Harvard Univ, USA  MC2 155

Referências

  1. . Global Tuberculosis Report 2022. , (2022).
  2. Luca, S., Mihaescu, T. History of BCG vaccine. Mædica. 8 (1), 53-58 (2013).
  3. Palmer, C. E., Long, M. W. Effects of infection with atypical mycobacteria on BCG vaccination and tuberculosis. The American Review of Respiratory Disease. 94 (4), 553-568 (1966).
  4. Brandt, L., et al. Failure of the Mycobacterium bovis BCG vaccine: some species of environmental mycobacteria block multiplication of BCG and induction of protective immunity to tuberculosis. Infection and Immunity. 70 (2), 672-678 (2002).
  5. Andersen, P., Doherty, T. M. The success and failure of BCG – implications for a novel tuberculosis vaccine. Nature Reviews. Microbiology. 3 (8), 656-662 (2005).
  6. Kumar, P. A perspective on the success and failure of BCG. Frontiers in Immunology. 12, 778028 (2021).
  7. Fine, P. E. Variation in protection by BCG: implications of and for heterologous immunity. Lancet. 346 (8986), 1339-1345 (1995).
  8. Triccas, J. A. Recombinant BCG as a vaccine vehicle to protect against tuberculosis. Bioengineered Bugs. 1 (2), 110-115 (2010).
  9. Dietrich, G., Viret, J. -. F., Hess, J. Mycobacterium bovis BCG-based vaccines against tuberculosis: novel developments. Vaccine. 21 (7-8), 667-670 (2003).
  10. Singh, V. K., Srivastava, R., Srivastava, B. S. Manipulation of BCG vaccine: a double-edged sword. European Journal of Clinical Microbiology & Infectious Diseases. 35 (4), 535-543 (2016).
  11. Bastos, R. G., Borsuk, S., Seixas, F. K., Dellagostin, O. A. Recombinant Mycobacterium bovis BCG. Vaccine. 27 (47), 6495-6503 (2009).
  12. Kaufmann, S. H. E., Gengenbacher, M. Recombinant live vaccine candidates against tuberculosis. Current Opinion in Biotechnology. 23 (6), 900-907 (2012).
  13. Yuan, X., et al. A live attenuated BCG vaccine overexpressing multistage antigens Ag85B and HspX provides superior protection against Mycobacterium tuberculosis infection. Applied Microbiology and Biotechnology. 99 (24), 10587-10595 (2015).
  14. Vartak, A., Sucheck, S. J. Recent advances in subunit vaccine carriers. Vaccines. 4 (2), 12 (2016).
  15. Lindenstrøm, T., et al. Tuberculosis subunit vaccination provides long-term protective immunity characterized by multifunctional CD4 memory T cells1. The Journal of Immunology. 182 (12), 8047-8055 (2009).
  16. Liu, Y., et al. A subunit vaccine based on rH-NS induces protection against Mycobacterium tuberculosis infection by inducing the Th1 immune response and activating macrophages. Acta Biochimica et Biophysica Sinica. 48 (10), 909-922 (2016).
  17. Ning, H., et al. Subunit vaccine ESAT-6:c-di-AMP delivered by intranasal route elicits immune responses and protects against Mycobacterium tuberculosis infection. Frontiers in Cellular and Infection Microbiology. 11, 647220 (2021).
  18. Woodworth, J. S., et al. A Mycobacterium tuberculosis-specific subunit vaccine that provides synergistic immunity upon co-administration with Bacillus Calmette-Guérin. Nature Communications. 12 (1), 6658 (2021).
  19. Moyle, P. M., Toth, I. Modern subunit vaccines: development, components, and research opportunities. ChemMedChem. 8 (3), 360-376 (2013).
  20. Baxter, D. Active and passive immunity, vaccine types, excipients and licensing. Occupational Medicine. 57 (8), 552-556 (2007).
  21. Lee, W. -. H., et al. Vaccination with Klebsiella pneumoniae-derived extracellular vesicles protects against bacteria-induced lethality via both humoral and cellular immunity. Experimental & Molecular Medicine. 47 (9), e183-e183 (2015).
  22. Micoli, F., et al. Comparative immunogenicity and efficacy of equivalent outer membrane vesicle and glycoconjugate vaccines against nontyphoidal Salmonella. Proceedings of the National Academy of Sciences. 115 (41), 10428-10433 (2018).
  23. Obiero, C. W., et al. A phase 2a randomized study to evaluate the safety and immunogenicity of the 1790GAHB generalized modules for membrane antigen vaccine against Shigella sonnei administered intramuscularly to adults from a shigellosis-endemic country. Frontiers in Immunology. 8, 1884 (2017).
  24. Sedaghat, M., et al. Evaluation of antibody responses to outer membrane vesicles (OMVs) and killed whole cell of Vibrio cholerae O1 El Tor in immunized mice. Iranian Journal of Microbiology. 11 (3), 212-219 (2019).
  25. Adriani, R., Mousavi Gargari, S. L., Nazarian, S., Sarvary, S., Noroozi, N. Immunogenicity of Vibrio cholerae outer membrane vesicles secreted at various environmental conditions. Vaccine. 36 (2), 322-330 (2018).
  26. Roier, S., et al. Intranasal immunization with nontypeable Haemophilus influenzae outer membrane vesicles induces cross-protective immunity in mice. PLOS ONE. 7 (8), e42664 (2012).
  27. Furuyama, N., Sircili, M. P. Outer membrane vesicles (OMVs) produced by gram-negative bacteria: structure, functions, biogenesis, and vaccine application. BioMed Research International. 2021, e1490732 (2021).
  28. Buzas, E. I. The roles of extracellular vesicles in the immune system. Nature Reviews Immunology. 23 (4), 236-250 (2022).
  29. Cai, W., et al. Bacterial outer membrane vesicles, a potential vaccine candidate in interactions with host cells based. Diagnostic Pathology. 13 (1), 95 (2018).
  30. Prados-Rosales, R., et al. Mycobacteria release active membrane vesicles that modulate immune responses in a TLR2-dependent manner in mice. The Journal of Clinical Investigation. 121 (4), 1471-1483 (2011).
  31. Bai, X., Findlow, J., Borrow, R. Recombinant protein meningococcal serogroup B vaccine combined with outer membrane vesicles. Expert Opinion on Biological Therapy. 11 (7), 969-985 (2011).
  32. Nagaputra, J. C., et al. Neisseria meningitidis native outer membrane vesicles containing different lipopolysaccharide glycoforms as adjuvants for meningococcal and nonmeningococcal antigens. Clinical and Vaccine Immunology: CVI. 21 (2), 234-242 (2014).
  33. Echeverria-Valencia, G., Flores-Villalva, S., Espitia, C. I. Virulence factors and pathogenicity of Mycobacterium. Mycobacterium – Research and Development. IntechOpen. , (2017).
  34. Prados-Rosales, R., Brown, L., Casadevall, A., Montalvo-Quirós, S., Luque-Garcia, J. L. Isolation and identification of membrane vesicle-associated proteins in Gram-positive bacteria and mycobacteria. MethodsX. 1, 124-129 (2014).
  35. Lee, J., et al. Proteomic analysis of extracellular vesicles derived from Mycobacterium tuberculosis. Proteomics. 15 (19), 3331-3337 (2015).
  36. Das, S., et al. Development of DNA aptamers to visualize release of mycobacterial membrane-derived extracellular vesicles in infected macrophages. Pharmaceuticals. 15 (1), 45 (2022).
  37. Brandt, L., Elhay, M., Rosenkrands, I., Lindblad, E. B., Andersen, P. ESAT-6 subunit vaccination against Mycobacterium tuberculosis. Infection and Immunity. 68 (2), 791-795 (2000).
  38. Kim, W. S., Kim, H., Kwon, K. W., Cho, S. -. N., Shin, S. J. Immunogenicity and vaccine potential of InsB, an ESAT-6-like antigen identified in the highly virulent Mycobacterium tuberculosis Beijing K strain. Frontiers in Microbiology. 10, 220 (2019).
  39. Valizadeh, A., et al. Evaluating the performance of PPE44, HSPX, ESAT-6 and CFP-10 factors in tuberculosis subunit vaccines. Current Microbiology. 79 (9), 260 (2022).
  40. Tang, Y., et al. Cryo-EM structure of Mycobacterium smegmatis DyP-loaded encapsulin. Proceedings of the National Academy of Sciences. 118 (16), (2021).
  41. Rosenkrands, I., et al. Identification and characterization of a 29-kilodalton protein from Mycobacterium tuberculosis culture filtrate recognized by mouse memory effector cells. Infection and Immunity. 66 (6), 2728-2735 (1998).
  42. Gu, S., et al. Comprehensive proteomic profiling of the membrane constituents of a Mycobacterium tuberculosis strain. Molecular & cellular proteomics: MCP. 2 (12), 1284-1296 (2003).
  43. Xiong, Y., Chalmers, M. J., Gao, F. P., Cross, T. A., Marshall, A. G. Identification of Mycobacterium tuberculosis H37Rv integral membrane proteins by one-dimensional gel electrophoresis and liquid chromatography electrospray ionization tandem mass spectrometry. Journal of Proteome Research. 4 (3), 855-861 (2005).
  44. Chen, X., Zaro, J. L., Shen, W. -. C. Fusion protein linkers: property, design and functionality. Advanced Drug Delivery Reviews. 65 (10), 1357-1369 (2013).
  45. Klein, J. S., Jiang, S., Galimidi, R. P., Keeffe, J. R., Bjorkman, P. J. Design and characterization of structured protein linkers with differing flexibilities. Protein Engineering, Design and Selection. 27 (10), 325-330 (2014).
  46. Green, M. R., Sambrook, J. . Molecular cloning, a laboratory manual, 4th Edition. , (2012).
  47. Atmakuri, K., Ding, Z., Christie, P. J. VirE2, a Type IV secretion substrate, interacts with the VirD4 transfer protein at cell poles of Agrobacterium tumefaciens. MolecularMicrobiology. 49 (6), 1699-1713 (2003).
  48. Woodworth, J. S., et al. A Mycobacterium tuberculosis-specific subunit vaccine that provides synergistic immunity upon co-administration with Bacillus Calmette-Guérin. Nature Communications. 12 (1), 6658 (2021).
  49. Khademi, F., Derakhshan, M., Yousefi-Avarvand, A., Tafaghodi, M., Soleimanpour, S. Multi-stage subunit vaccines against Mycobacterium tuberculosis: an alternative to the BCG vaccine or a BCG-prime boost. Expert Review of Vaccines. 17 (1), 31-44 (2018).
  50. Prior, J. T., et al. Bacterial-derived outer membrane vesicles are potent adjuvants that drive humoral and cellular immune responses. Pharmaceutics. 13 (2), 131 (2021).
  51. Tan, K., Li, R., Huang, X., Liu, Q. Outer membrane vesicles: current status and future direction of these novel vaccine adjuvants. Frontiers in Microbiology. 9, 783 (2018).
check_url/pt/65138?article_type=t

Play Video

Citar este artigo
Jayaswal, P., Ilyas, M., Singh, K., Kumar, S., Sisodiya, L., Jain, S., Mahlawat, R., Sharma, N., Gupta, V., Atmakuri, K. Enrichment of Native and Recombinant Extracellular Vesicles of Mycobacteria. J. Vis. Exp. (202), e65138, doi:10.3791/65138 (2023).

View Video