Summary

人瘢痕疙瘩组织中原代真皮成纤维细胞的分离、培养和表征

Published: July 28, 2023
doi:

Summary

本研究描述了一种优化的方案,用于从瘢痕疙瘩组织中建立原代成纤维细胞,可以有效和稳定地提供纯净和可行的成纤维细胞。

Abstract

成纤维细胞是瘢痕疙瘩组织中的主要细胞类型,在瘢痕疙瘩的形成和发展中起着至关重要的作用。来自瘢痕疙瘩组织的原代成纤维细胞的分离和培养是进一步研究瘢痕疙瘩的生物学功能和分子机制以及治疗瘢痕疙瘩的新治疗策略的基础。获得原代成纤维细胞的传统方法具有局限性,例如细胞状态差,与其他类型的细胞混合以及易受污染。本文描述了一种优化且易于重现的方案,可以减少获取成纤维细胞时可能出现问题的发生。在该方案中,可以在分离后5天观察到成纤维细胞,并在培养10天后达到近80%的汇合度。然后,使用用于免疫荧光测定的PDGFRα和vimentin抗体以及用于流式细胞术的CD90抗体传代和验证成纤维细胞。总之,通过该方案可以轻松获得来自瘢痕疙瘩组织的成纤维细胞,这可以为瘢痕疙瘩研究提供实验室中丰富而稳定的细胞来源。

Introduction

瘢痕疙瘩是一种纤维增殖性疾病,表现为斑块的持续生长,这些斑块经常侵入周围的正常皮肤而没有自限性,并引起患者不同程度的瘙痒、疼痛以及美容和心理负担1.成纤维细胞是参与瘢痕疙瘩的原代细胞,通过过度增殖、多余的细胞外基质产生和无序的胶原蛋白在这种疾病的形成和发展中起着至关重要的作用2,3。然而,潜在的发病机制尚不清楚,仍然缺乏有效的瘢痕疙瘩治疗方法;因此,迫切需要进一步研究4,5

由于体内瘢痕疙瘩研究没有理想的动物模型6,7,通过从瘢痕疙瘩组织中获取原代成纤维细胞来构建体外模型可以为瘢痕疙瘩研究提供可行性和可靠性2,6原代细胞是直接来源于活组织的细胞,人们普遍认为,与细胞系8,9相比这些细胞可以更接近多个个体的生理状态和遗传背景。原代细胞培养为研究细胞的生长和代谢以及其他细胞表型提供了一种强有力的手段。

目前,获得原代成纤维细胞的方法有两种:酶消化和外植体培养。然而,已经确定了获得原代成纤维细胞的几个障碍,例如被各种细菌或真菌污染的风险,与不易去除的其他类型的细胞混合,培养周期的长周期,与原始细胞相比细胞特性的后续变化等等9.因此,开发一种可行且有效的方法来获得原代成纤维细胞是进一步研究和应用的基础。本研究描述了一种优化的方案,用于从瘢痕疙瘩组织中提取原代成纤维细胞,可以有效和稳定地提供纯净和可行的成纤维细胞。

Protocol

这项研究得到了南方医科大学皮肤病医院机构审查委员会的批准(2020081)。在从个体收集组织之前,已获得知情的患者同意。 1. 准备 注意:以下程序应在生物安全柜下的无菌环境中进行。 通过将 10% 胎牛血清 (FBS) 和 1% 青霉素-链霉素-两性霉素 B 溶液 (PSA) 添加到高葡萄糖 Dulbecco 的改良 Eagle 培养基 (DMEM) 中来制备完整的培养?…

Representative Results

该协议的时间线总结在 图1A中。分离过程的一些代表性图像如图 2所示;小心地去除表皮和脂肪层,并将真皮层分离成3-4mm2的小碎片,接种到培养皿中。 如图3A所示,在处理后5天在显微镜下观察到组织碎片的几个成纤维细胞生长。如图3B所示,成纤维细胞显示出高增殖速率,并…

Discussion

从瘢痕疙瘩组织获得原代成纤维细胞是进一步研究的关键基础。到目前为止,有两种方法可以获得原代成纤维细胞:酶消化和外植体培养11,12,13,14。然而,两种传统方法都有局限性,例如易受污染,与其他类型的细胞混合,培养期长,成功率低15,16。这项研?…

Declarações

The authors have nothing to disclose.

Acknowledgements

这项工作得到了中国国家自然科学基金(批准号81903189和82073418)和广州市科学技术基金(批准号202102020025)的资助。

Materials

1.5 mL sterile centrifuge tube JETBIOFIL CFT002015
15 mL sterile centrifuge tube JETBIOFIL 8076
4% polyformaldehyde Beyotime Biotechnology P0099 Cell fixation
50 mL sterile centrifuge tube JETBIOFIL 8081 Put keloid tissue
Alexa Fluor-555 goat anti-rabbit IgG  Abcam Alexa Fluor 555  second antibody for immunofluorescence staining assay
Anti human CD90 BioLegend B301002 Identify the purity of fibroblasts
Antibody diluent Beyotime Biotechnology P0262
Biological safety cabinet  Thermo Scientific 1300 series A2 Isolation and culture cells
Bovine serum albumin aladdin B265993 Blocking for immunofluorescence staining assay
Carbon dioxide incubator ESCO CCL-170B-8 Using for culturing cells
Cell cryotubes Corning 43513 Store the cells in low temperature
centrifugal machine Thermo Fisher ST 16R Discard supernatant 
DAPI Beyotime Biotechnology C1006 Stain the cellular nucleus
DMSO MP Biomedicals 196055 Using for preserving cells
Dulbecco's modified eagle medium Gibco C11995500BT Culture medium solution
Fetal bovine serum BI 04-001-1A
Flow cytometer BD BD FACSCelesta Observing the identity of cells
frozen box Thermo Scientific  5100-0050
Inverted microscope Nikon ECLIPSE Ts2
Laser confocal microscope Nikon AIR-HD25 Observing the immunofluorescence staining assay
PDGFR-α antibody CST 3174T First antibody for immunofluorescence staining assay
Penicillin-streptomycin-Am solution Solarbio P1410 Add in culture medium solution to avoid contamination
petri dish JETBIOFIL 7556 Culture fibroblasts
Phosphate buffered saline solution Gibco C10010500BT Culture medium solution
Rabbit (DAIE) mAB IgG XR (R) Isotuge Control (PE) Cell Signaling Technology 5742S As a control for flow cytometry
Round coverslip Biosharp 801007 Cell culture
Triton X 100 Solarbio T8200 Punch holes in the cell membrane
Trypsin-EDTA Gibco 25200072 Used for passaging cells
Vimentin antibody Abcam ab8978 First antibody for immunofluorescence staining assay

Referências

  1. Zhu, Y. Q., et al. Genome-wide analysis of Chinese keloid patients identifies novel causative genes. Annals Of Translational Medicine. 10 (16), 883 (2022).
  2. Feng, F., et al. Biomechanical regulatory factors and therapeutic targets in keloid fibrosis. Frontiers in Pharmacology. 13, 906212 (2022).
  3. Cohen, A. J., Nikbakht, N., Uitto, J. Keloid disorder: Genetic basis, gene expression profiles, and immunological modulation of the fibrotic processes in the skin. Cold Spring Harbor Perspectives in Biology. , (2022).
  4. Wang, W., et al. Current advances in the selection of adjuvant radiotherapy regimens for keloid. Frontiers in Medicine. 9, 1043840 (2022).
  5. Ghadiri, S. J., Kloczko, E., Flohr, C. Topical treatments in the management of keloids and hypertrophic scars: A critically appraised topic. British Journal of Dermatology. 187 (6), 855-856 (2022).
  6. Neves, L. M. G., Wilgus, T. A., Bayat, A. In vitro, ex vivo, and in vivo approaches for investigation of skin scarring: Human and animal models. Advances in Wound Care. 12 (2), 97-116 (2023).
  7. Supp, D. M. Animal models for studies of keloid scarring. Advances in Wound Care. 8 (2), 77-89 (2019).
  8. Künzel, S. R., et al. Ultrasonic-augmented primary adult fibroblast isolation. Journal of Visualized Experiments. (149), e59858 (2019).
  9. He, Y., et al. An improved explants culture method: Sustainable isolation of keloid fibroblasts with primary characteristics. Journal of Cosmetic Dermatology. 21 (12), 7131-7139 (2022).
  10. Philippeos, C., et al. Spatial and single-cell transcriptional profiling identifies functionally distinct human dermal fibroblast subpopulations. Journal of Investigative Dermatology. 138 (4), 811-825 (2018).
  11. Li, L., et al. Hydrogen sulfide suppresses skin fibroblast proliferation via oxidative stress alleviation and necroptosis inhibition. Medicine and Cellular Longevity. 2022, 7434733 (2022).
  12. Zhou, B. Y., et al. Nintedanib inhibits keloid fibroblast functions by blocking the phosphorylation of multiple kinases and enhancing receptor internalization. Acta Pharmacologica Sinica. 41 (9), 1234-1245 (2020).
  13. Wang, X. M., Liu, X. M., Wang, Y., Chen, Z. Y. Activating transcription factor 3 (ATF3) regulates cell growth, apoptosis, invasion and collagen synthesis in keloid fibroblast through transforming growth factor beta (TGF-beta)/SMAD signaling pathway. Bioengineered. 12 (1), 117-126 (2021).
  14. Sato, C., et al. Conditioned medium obtained from amnion-derived mesenchymal stem cell culture prevents activation of keloid fibroblasts. Plastic and Reconstructive Surgery. 141 (2), 390-398 (2018).
  15. Li, J., et al. Long-term explant culture: An improved method for consistently harvesting homogeneous populations of keloid fibroblasts. Bioengineered. 13 (1), 1565-1574 (2022).
  16. Wang, Q., et al. Altered glucose metabolism and cell function in keloid fibroblasts under hypoxia. Redox Biology. 38, 101815 (2021).
  17. Fan, C., et al. Single-cell transcriptome integration analysis reveals the correlation between mesenchymal stromal cells and fibroblasts. Frontiers in Genetics. 13, 798331 (2022).
  18. Yao, L., et al. Temporal control of PDGFRα regulates the fibroblast-to-myofibroblast transition in wound healing. Cell Reports. 40 (7), 111192 (2022).
  19. Domdey, M., et al. Consecutive dosing of UVB irradiation induces loss of ABCB5 expression and activation of EMT and fibrosis proteins in limbal epithelial cells similar to pterygium epithelium. Stem Cell Research. 40, 102936 (2022).
  20. Lin, Z., et al. Renal tubular epithelial cell necroptosis promotes tubulointerstitial fibrosis in patients with chronic kidney disease. FASEB Journal. 36 (12), e22625 (2022).
  21. Korosec, A., et al. Lineage identity and location within the dermis determine the function of papillary and reticular fibroblasts in human skin. Journal of Investigative Dermatology. 139 (2), 342-351 (2019).

Play Video

Citar este artigo
Song, J., Zhang, Y., Pan, H., Xu, X., Deng, C., Yang, B. Isolation, Culture, and Characterization of Primary Dermal Fibroblasts from Human Keloid Tissue. J. Vis. Exp. (197), e65153, doi:10.3791/65153 (2023).

View Video