Waiting
Processando Login

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Medicine

Published: May 26, 2023 doi: 10.3791/65266
* These authors contributed equally

Materials

Name Company Catalog Number Comments
1.5% sevofluorane Zoetis 20070289
2.5 mm endotracheal tube Henry Schein 988-1782
3 Fr catheter for peripheral arterial access Prodimed 3872.1
4 Fr catheter for peripheral venous access Prodimed 3872.13
6 French ECMO pediatric arterial cannula  Medtronic  77206
8 French ECMO pediatric venous cannula  Medtronic  68112
Adrenaline B Braun 469801-1119
Adson forceps Allgaier instruments 08-030-130 Any brand may be substituted
BP cuff  Mindray
Buprenorfine (0.01 mg/kg) Richter Pharma #9004114000537
Calcium gluconate (2.25 mmol/10 mL) B Braun 570-12606194-1119
Dexmedetomidine (0.5-2.0 µg/kg/min) Orion farma GTN 064321000017253
Dolethol vetoquinol #3605870004904
Dopamine hikma A044098010
Fentanyl (25-200 µg/kg/min) Kern Pharma 756650.2H
Fresh donor pig blood Type O Any 
Heat Exchanger Maquet Gmbh & Co MCP70107.2130
Heparin (1350 UI) ROVI 641641.1
Irwin retractor Aesculap BV104R Any brand may be substituted
Ketamine (20 mg/kg) Richter Pharma #9004114000452
Lubricant Any orotracheal lubricant
Midazolam (0.3 mg/kg) Serra Pamies 619627.4
Mosquito forceps Aesculap BH109R Any brand may be substituted
Needle forceps Aesculap BM016R Any brand may be substituted
Normal saline (0.9%) B Braun Fisiovet 5/469827/0610 Any brand may be substituted
Plastic clamps for tubing Achim Schulz-Lauterbach DBGM Any brand may be substituted
Potassium chloride (9 mEq) B Braun 3545156
Propofol (0.5 mg/kg) Zoetis 579742.7
Quadrox Membrane Oxygenator  Maquet Gmbh & Co BE-HMOSD 300000
Rectal thermometer Any
RotaFlow Console ECMO system  Maquet Gmbh & Co MCP00703177 Neonatal ECMO System
Scalpel Aesculap BB074R Any brand may be substituted
Sodium bicarbonate (1 M) Fresenius Kabi 634477.4 OH
Surgical scissors Talmed Inox 112 Any brand may be substituted
Suture (3/0 poly absorbable) B Braun Novosyn (R) 0068030N1 Any brand may be substituted

DOWNLOAD MATERIALS LIST

References

  1. vander Linde, D., et al. Birth prevalence of congenital heart disease worldwide: A systematic review and meta-analysis. Journal of the American College of Cardiology. 58 (21), 2241-2247 (2011).
  2. Claessens, N. H. P., et al. Amplitude-integrated electroencephalography for early recognition of brain injury in neonates with critical congenital heart disease. Journal of Pediatrics. 202, 199-205 (2018).
  3. Aly, S. A., et al. Cerebral tissue oxygenation index and lactate at 24 hours postoperative predict survival and neurodevelopmental outcome after neonatal cardiac surgery. Congenital Heart Disease. 12 (2), 188-195 (2017).
  4. Bouma, B. J., Mulder, B. J. M. Changing landscape of congenital heart disease. Circulation Research. 120 (6), 908-922 (2017).
  5. Jungwirth, B., de Lange, F. Animal models of cardiopulmonary bypass: development, applications, and impact. Seminars in Cardiothoracic and Vascular Anesthesia. 14 (2), 136-140 (2010).
  6. Sarrechia, I., et al. Neurocognitive development and behaviour in school-aged children after surgery for univentricular or biventricular congenital heart disease. European Journal of Cardio-Thoracic Surgery. 49 (1), 167-174 (2016).
  7. Schlosser, L., et al. Neurocognitive functioning in young adults with congenital heart disease: insights from a case-control study. Cardiology in the Young. 32 (5), 694-701 (2022).
  8. Miller, S. P., et al. Abnormal brain development in newborns with congenital heart disease. The New England Journal of Medicine. 357 (19), 1928-1938 (2007).
  9. Fang, A., Allen, K. Y., Marino, B. S., Brady, K. M. Neurologic outcomes after heart surgery. Paediatric Anaesthesia. 29 (11), 1086-1093 (2019).
  10. Carr, B. D., et al. Inflammatory effects of blood-air interface in a porcine cardiopulmonary bypass model. ASAIO Journal. 66 (1), 72-78 (2020).
  11. Drabek, T., et al. Emergency preservation and delayed resuscitation allows normal recovery after exsanguination cardiac arrest in rats: A feasibility trial. Critical Care Medicine. 35 (2), 532-537 (2007).
  12. Sheikh, A. M., et al. Proteomics of cerebral injury in a neonatal model of cardiopulmonary bypass with deep hypothermic circulatory arrest. The Journal of Thoracic and Cardiovascular Surgery. 132 (4), 820-828 (2006).
  13. Khailova, L., et al. Tissue alkaline phosphatase activity and expression in an experimental infant swine model of cardiopulmonary bypass with deep hypothermic circulatory arrest. Journal of Inflammation. 17, 27 (2020).
  14. Mavroudis, C. D., et al. Electroencephalographic response to deep hypothermic circulatory arrest in neonatal swine and humans. The Annals of Thoracic Surgery. 106 (6), 1841-1846 (2018).
  15. Gabriel, G. C., et al. Cardiovascular development and congenital heart disease modeling in the pig. Journal of the American Heart Association. 10 (14), 021631 (2021).
  16. Dhari, Z., et al. Impact of cardiopulmonary bypass on neurogenesis and cortical maturation. Annals of Neurology. 90 (6), 913-926 (2021).
  17. Wittnich, C., Belanger, M. P., Wallen, W. J., Torrance, S. M., Juhasz, S. A Long-term stable normothermic cardiopulmonary bypass model in neonatal swine. The Journal of Surgery Research. 101 (2), 176-182 (2001).
  18. Lodge, A. J., et al. Regional blood flow during pulsatile cardiopulmonary bypass and after circulatory arrest in an infant model. The Annals of Thoracic Surgery. 63 (5), 1243-1250 (1997).
  19. Davidson, J. A., et al. Alkaline phosphatase treatment of acute kidney injury in an infant piglet model of cardiopulmonary bypass with deep hypothermic circulatory arrest. Scientific Reports. 9 (1), 14175 (2019).
  20. Wang, X., et al. Ulinastatin protects against acute kidney injury in infant piglets model undergoing surgery on hypothermic low-flow cardiopulmonary bypass. PLoS One. 10 (12), e0144516 (2015).
  21. Tegtmeyer, K., Brady, G., Lai, S., Hodo, R., Braner, D. Videos in clinical medicine: placement of an arterial line. The New England Journal of Medicine. 354 (15), 13 (2006).
  22. Nteliopoulos, G., et al. Lung injury following cardiopulmonary bypass: a clinical update. Expert Review of Cardiovascular Therapy. 20 (11), 871-880 (2022).
  23. Jufar, A. H., et al. Renal and cerebral hypoxia and inflammation during cardiopulmonary bypass. Comprehensive Physiology. 12 (1), 2799-2834 (2021).
  24. Nollert, G., Reichart, B. Cardiopulmonary bypass and cerebral injury in adults. Shock. 16 (1), 16-19 (2001).
  25. Tóth, Z., Györimolnár, I., Abrahám, H., Hevesi, A. Cannulation and cardiopulmonary bypass produce selective brain lesions in pigs. Asian Cardiovascular & Thoracic Annals. 14 (4), 273-278 (2006).
  26. Senra, D. F., et al. A rat model of acute lung injury induced by cardiopulmonary bypass. Shock. 16 (3), 223-226 (2001).
  27. Liu, M. D., Luo, P., Wang, Z. J., Fei, Z. Changes of serum Tau, GFAP, TNF-α and malonaldehyde after blast-related traumatic brain injury. Chinese Journal of Traumatology. 17 (6), 317-322 (2014).
  28. Kim, W. G., Moon, H. J., Won, T. H., Chee, H. K. Rabbit model of cardiopulmonary bypass. Perfusion. 14 (2), 101-105 (1999).
  29. Mei, B., et al. Acute adrenal cortex injury during cardiopulmonary bypass in a canine model. The Journal of Thoracic and Cardiovascular Surgery. 156 (2), 696-706 (2018).
  30. Cameron, D., Tam, V., Cheng, W., Braxton, M. Studies in the physiology of cardiopulmonary bypass using a swine model. Swine as Models in Biomedical Research. , Iowa State University Press. Ames, Iowa. 187-197 (1992).
  31. Belanger, M., Wittnich, C., Torrance, S., Juhasz, S. Model of normothermic long-term cardiopulmonary bypass in swine weighing more than eighty kilograms. Comparative Medicine. 52 (2), 117-121 (2002).
  32. Münch, F., et al. Improved contractility with tepid modified full blood cardioplegia compared with cold crystalloid cardioplegia in a piglet model. European Journal of Cardio-Thoracic Surgery. 48 (2), 236-243 (2015).
  33. Tirilomis, T., Paz, D., Nolte, L., Schoendube, F. A. Modified aortic cannulation for cardiopulmonary bypass in neonatal piglet model. Journal of Cardiac Surgery. 23 (5), 503-504 (2008).
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Ball, M., Benito, S., Caride, J. P., More

Ball, M., Benito, S., Caride, J. P., Ruiz-Herguido, C., Camprubí-Camprubí, M., Sanchez-de-Toledo, J. Pediatric Animal Model of Extracorporeal Cardiopulmonary Resuscitation After Prolonged Circulatory Arrest. J. Vis. Exp. (195), e65266, doi:10.3791/65266 (2023).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter