Summary

Idrogel fotoregistrabili in bioprinting 3D per studiare l'attivazione dei fibroblasti

Published: June 30, 2023
doi:

Summary

Questo articolo descrive come biostampare in 3D idrogel fototabili per studiare l’irrigidimento della matrice extracellulare e l’attivazione dei fibroblasti.

Abstract

Gli idrogel fototabili possono trasformarsi spazialmente e temporalmente in risposta all’esposizione alla luce. L’incorporazione di questi tipi di biomateriali nelle piattaforme di coltura cellulare e l’innesco dinamico dei cambiamenti, come l’aumento della rigidità microambientale, consente ai ricercatori di modellare i cambiamenti nella matrice extracellulare (ECM) che si verificano durante la progressione della malattia fibrotica. In questo articolo, viene presentato un metodo per la biostampa 3D di un biomateriale idrogel fototabile in grado di eseguire due reazioni di polimerizzazione sequenziale all’interno di un bagno di supporto di gelatina. La tecnica di bioprinting FRESH (Freeform Reversible Embedding of Suspended Hydrogels) è stata adattata regolando il pH del bagno di supporto per facilitare una reazione di addizione di Michael. In primo luogo, il bioink contenente poli(glicole etilenico)-alfa metacrilato (PEGαMA) è stato fatto reagire fuori stechiometria con un reticolante degradabile in cella per formare idrogel morbidi. Questi idrogel morbidi sono stati successivamente esposti al fotoinitatore e alla luce per indurre l’omopolimerizzazione di gruppi non reagiti e irrigidire l’idrogel. Questo protocollo copre la sintesi dell’idrogel, la biostampa 3D, il fotoirrigidimento e la caratterizzazione degli endpoint per valutare l’attivazione dei fibroblasti all’interno di strutture 3D. Il metodo qui presentato consente ai ricercatori di biostampare in 3D una varietà di materiali che subiscono reazioni di polimerizzazione catalizzate dal pH e potrebbe essere implementato per progettare vari modelli di omeostasi, malattia e riparazione dei tessuti.

Introduction

La biostampa 3D è una tecnologia trasformativa che consente ai ricercatori di depositare con precisione cellule e biomateriali all’interno di volumi 3D e ricreare la complessa struttura gerarchica dei tessuti biologici. Nell’ultimo decennio, i progressi nella biostampa 3D hanno creato tessuti cardiaci umani1 battenti, modelli funzionali di tessuti renali2, modelli di scambio gassoso all’interno del polmone3 e modelli tumorali per la ricerca sul cancro4. L’invenzione di tecniche di bioprinting 3D embedded, come la bioprinting FRESH (Freeform Reversible Embedding of Suspended Hydrogel), ha reso possibile la riproduzione di strutture complesse dei tessuti molli come i vasi sanguigni polmonari5 e persino il cuore umano6 in 3D. La biostampa 3D FRESH facilita la stampa strato per strato di bioink morbidi e a bassa viscosità attraverso l’estrusione in un bagno di supporto per assottigliamento al taglio. Il bagno di supporto è costituito da un materiale come microparticelle di gelatina strettamente impacchettate che funge da plastica Bingham e mantiene la forma e la struttura previste del bioink dopo la stampa. Una volta che il costrutto stampato si è solidificato, il bagno di supporto può essere sciolto aumentando la temperatura a 37 °C7.

Un recente articolo di revisione ha riassunto i materiali che sono stati biostampati in 3D in varie pubblicazioni utilizzando la tecnica FRESH. Questi materiali di derivazione naturale vanno dal collagene di tipo I all’acido ialuronico metacrilato e rappresentano diversi meccanismi di gelificazione7. La maggior parte degli studi di ricerca eseguiti utilizzando questa tecnica di bioprinting 3D impiegano biomateriali statici che non cambiano in risposta a stimoli esterni. I biomateriali idrogel fototunable dinamici sono stati utilizzati dal nostro laboratorio e da altri 8,9,10,11,12 per modellare una varietà di malattie fibrotiche. A differenza dei biomateriali statici, i bioink fotoregistrabili consentono di creare un modello ammorbidito con un valore di modulo elastico inferiore e successivamente irrigidito per esplorare le risposte cellulari all’aumento dell’irrigidimento microambientale.

Le malattie fibrotiche sono caratterizzate da un aumento della produzione di matrice extracellulare che può causare cicatrici e irrigidimenti13. L’irrigidimento dei tessuti può causare ulteriori lesioni e la distruzione del tessuto colpito, causando danni permanenti agli organi e persino la morte; I disturbi fibrotici sono responsabili di un terzo della mortalità in tutto il mondo. I fibroblasti producono una matrice extracellulare in eccesso e aberrante in questo stato di malattia14,15. L’aumento della proliferazione dei fibroblasti e la deposizione di matrice extracellulare irrigidiscono ulteriormente il tessuto e attivano un ciclo di feedback positivo profibrotico16,17,18,19. Lo studio dell’attivazione dei fibroblasti è fondamentale per comprendere le malattie fibrotiche. Qui presentiamo l’ipertensione arteriosa polmonare umana (PAH) come esempio di un disturbo fibrotico in cui è importante imitare la geometria 3D del vaso sanguigno utilizzando la biostampa 3D e introdurre le capacità di irrigidimento dinamico degli idrogel fototabili. La PAH è una condizione in cui la pressione nelle arterie polmonari principali supera i livelli normali e applica uno sforzo al cuore, aumentando l’attivazione dei fibroblasti avventiziali dell’arteria polmonare umana (HPAAF) e irrigidendo i tessuti dei vasi sanguigni16,17,18,19. Una formulazione fototabile di poli(glicole etilenico)-alfa metacrilato (PEGαMA) bioink consente l’irrigidimento temporale nei costrutti e aiuta a modellare sia il tessuto sano che la progressione della malattia 5,8,9,10. Lo sfruttamento di questa caratteristica unica consente di quantificare l’attivazione e la proliferazione dell’HPAAF in risposta all’irrigidimento microambientale in 3D e può fornire preziose informazioni sui meccanismi cellulari coinvolti in questa malattia. Il protocollo qui descritto consentirà ai ricercatori di creare modelli 3D che ricapitolano i cambiamenti nel microambiente extracellulare durante la progressione della malattia o la riparazione dei tessuti e studiano l’attivazione dei fibroblasti.

Protocol

1. Sintesi e caratterizzazione di PEGαMA NOTA: La sintesi del poli(glicole etilenico)-alfa metacrilato (PEGαMA) è stata adattata da Hewawasam et al . ed eseguita in condizioni di assenza di umidità9. Pesare i reagenti.NOTA: Ad esempio, pesare 5 g di ossidrile PEG a 8 bracci da 10 g e 10 kg/mol e 0,38 g di idruro di sodio (NaH) (vedere la tabella dei materiali). Aggiungere una barra di agitazione al p…

Representative Results

Questo protocollo descrive come biostampare in 3D idrogel fototabili all’interno di un bagno di supporto per creare costrutti in grado di irrigidirsi dinamici e temporali per studiare l’attivazione dei fibroblasti in geometrie che imitano i tessuti umani. In primo luogo, il protocollo ha spiegato come sintetizzare PEGαMA, la spina dorsale di questo sistema polimerico fototabile. Le misurazioni della spettroscopia di risonanza magnetica nucleare (NMR) hanno mostrato una funzionalizzazione riuscita del PEGαMA al 96,5% (<…

Discussion

Le reazioni di polimerizzazione a doppio stadio in risposta all’esposizione controllata alla luce possono irrigidire i biomateriali con controllo spaziale e temporale. Diversi studi hanno sfruttato questa tecnica per valutare le interazioni cellula-matrice in varie piattaforme 5,8,9,10,11,21,22,23.<sup class="xref"…

Declarações

The authors have nothing to disclose.

Acknowledgements

Gli autori desiderano ringraziare il Dr. Adam Feinberg (Carnegie Mellon University) e coloro che hanno ospitato il 3D Bioprinting Open-Source Workshop. Queste persone hanno reso possibile l’apprendimento delle tecniche di bioprinting FRESH e la costruzione della biostampante 3D utilizzata per questi studi. Inoltre, gli autori vorrebbero riconoscere Biorender.com, che è stato utilizzato per produrre figure in questo manoscritto. Questo lavoro è stato sostenuto da più gruppi o fonti di finanziamento, tra cui la Rose Community Foundation (DDH e CMM), un Colorado Pulmonary Vascular Disease Research Award (DDH e CMM), la National Science Foundation nell’ambito dell’Award 1941401 (CMM), il Dipartimento dell’Esercito nell’ambito del premio W81XWH-20-1-0037 (CMM), il National Cancer Institute del NIH nell’ambito del premio R21 CA252172 (CMM), il Ludeman Family Center for Women’s Health Research presso l’Università del Colorado Anschutz Medical Campus (DDH e CMM), il National Heart, Lung, and Blood Institute del National Institutes of Health con i premi R01 HL080396 (CMM), R01 HL153096 (CMM), F31 HL151122 (DDH) e T32 HL072738 (DDH e AT).

Materials

AccuMax Radiometer/Photometer Kit Spectronics Corporation XPR-3000 To measure light intensity, used for photostiffening
Acetic Acid  Fisher Scientific BP2401-500 Used during PEGaMA synthesis
Acetone Fisher Scientific A184 Used with the cryosections
ActinGreen 488 ReadyProbes Fisher Scientific R37110 Used for staining
Aluminum Foil Reynolds F28028
Anhydrous Tetrahydrofuran (THF) Sigma-Aldrich 401757-1L Used during PEGaMA synthesis
Argon Compressed Gas Airgas AR R300 Used during PEGaMA synthesis
8 Arm Poly(ethylene glycol)-hydroxyl (PEG-OH) JenKem Technology 8ARM-PEG-10K Used during PEGaMA synthesis
365 nm Bandpass Filter Edmund Optics 65-191 Used for photostiffening
Bovine Serum Albumin (BSA) Fisher Scientific BP9700-100 Used during staining process
Buchner Funnel Quark Glass QFN-8-14 Used during PEGaMA synthesis
Calcein AM Invitrogen 65-0853-39 Used during staining process
Celite 545 (Filtration Aid) EMD Millipore CX0574-1 Used during PEGaMA synthesis
Charged Microscope Slides Globe Scientific 1358W
Chloroform-d Sigma-Aldrich 151823-10X0.75ML Used to characterize PEGaMA
Click-iT Plus EdU Cell Proliferation Kit Invitrogen C10637 Used for staining
50 mL Conical Tubes CELLTREAT 667050B
Cryogenic Safety Kit Cole-Parmer EW-25000-85
Cryostat Leica CM 1850-3-1
Dialysis Tubing Repligen 132105
4’,6-Diamidino-2-Phylindole (DAPI) Sigma-Aldrich D9542-1MG Used for staining
Diethyl Ether Fisher Scientific E1384 Used during PEGaMA synthesis
1,4-Dithiothreitol (DTT)  Sigma-Aldrich 10197777001 Bioink component
Dulbecco's Modified Eagle's Medium (DMEM) Cytiva SH30271.FS
Ethyl 2-(Bromomethyl)Acrylate (EBrMA) Ambeed Inc. A918087-25g Used during PEGaMA synthesis
Filter Paper Whatman 1001-090 Used during PEGaMA synthesis
Freezone 2.5L Freeze Dry System Labconco LA-2.5LR Lyophilizer
Fusion 360 Autodesk N/A Software download
2.5 mL Gastight Syringe Hamilton 81420 Used for bioprinting
15 Gauge 1.5" IT Series Tip Jensen Global JG15-1.5X Used for bioprinting
30 Gauge 0.5" HP Series Tip Jensen Global JG30-0.5HPX Used for bioprinting
Goat Anti-Mouse Alexa Fluor 555 Antibody Fisher Scientific A21422 Used for staining
Glycine Fisher Scientific C2H5NO2 Used during staining process
Hemocytometer Fisher Scientific 1461
Hoechst Thermo Scientific 62249 Used during staining process
Human Pulmonary Artery Adventitial Fibroblasts (HPAAFs) AcceGen ABC-TC3773  From a 2-year-old male patient
Hydrochloric Acid (HCl) Fisher Scientific A144-500 Used to pH adjust solutions
ImageJ National Institutes of Health (NIH) N/A Free software download
ImmEdge® Pen Vector Laboratories H-4000 Used during staining process
Incubator VWR VWR51014991
LifeSupport Gelatin Microparticle Slurry (Gelatin Slurry) Advanced Biomatrix 5244-10GM Used for bioprinting
Light Microscope Olympus CKX53 Inverted light microscope
Lithium Phenyl-2,4,6-Trimethylbenzoylphosphinate (LAP) Sigma-Aldrich 900889-5G Photoinitiator used for photostiffening
Liquid Nitrogen N/A N/A
LulzBot Mini 2  LulzBot N/A Bioprinter adapted
Methacryloxyethyl Thiocarbamoyl Rhodamine B  Polysciences Inc. 669775-30-8
2-Methylbutane Sigma-Aldrich M32631-4L
Microman Capillary Pistons CP1000 VWR 76178-166 Positive displacement pipette tips
MMP2 Degradable Crosslinker (KCGGPQGIWGQGCK) GL Biochem N/A Bioink component
Mouse Anti-Human αSMA Monoclonal Antibody Fisher Scientific MA5-11547 Used for staining
OmniCure Series 2000  Lumen Dynamics S2000-XLA UV light source used for photostiffening
Paraformaldehyde (PFA)  Electron Microscopy Sciences 15710 Used to fix samples
pH Meter Mettler Toledo  FP20 
pH Strips Cytiva 10362010
Phosphate Buffered Saline (PBS) Hyclone Laboratories, Inc. Cytiva SH30256.FS
Pipette Set Fisher Scientific 14-388-100
10 µL Pipette Tips USA Scientific 1120-3710
20 µL Pipette Tips USA Scientific 1183-1510
200 µL Pipette Tips USA Scientific 1111-0700
1000 µL Pipette Tips USA Scientific 1111-2721
Poly(Ethylene Glycol)-Alpha Methacrylate (PEGαMA) N/A N/A Refer to manuscript for synthesis steps
Poly(Ethylene Oxide) (PEO) Sigma-Aldrich 372773-250G Bioink component
Positive Displacement Pipette Fisher Scientific FD10004G 100-1000 µL
Potassium Hydroxide (KOH) Sigma-Aldrich 221473-500G Used to pH adjust solutions
ProLong Gold Antifade Reagent Invitrogen P36930 Used during staining process
Pronterface All3DP N/A Software download
Propidium Iodide Sigma-Aldrich P4864-10ML Used for staining
RGD Peptide (CGRGDS) GL Biochem N/A Bioink component
Rocker VWR 10127-876
Rotary Evaporator  Thomas Scientific 11100V2022 Used during PEGaMA synthesis
Rubber Band Staples 808659
Schlenk Flask  Kemtech America F902450 Used during PEGaMA synthesis
Slic3r Slic3r N/A Software download
Smooth Muscle Cell Growth Medium-2 (SmGM-2) BulletKit Lonza CC-3182 Kit contains CC-3181 and CC-4149 components
Sodium Hydride  Sigma-Aldrich 223441-50G Used during PEGaMA synthesis
Sorvall ST 40R Centrifuge Fisher Scientific 75-004-525
Stir Bar VWR 58948-091
Syringe Filter VWR 28145-483 Used to sterile filter solutions
T-75 Tissue-Cultured Treated Flask VWR 82050-856 Used for cell culture work
Tissue-Tek Cyromold Sakura 4557
Tissue-Tek O.C.T Compound (OCT) Sakura 4583
Tris(2-Carboxyethyl) Phosphine (TCEP) Sigma-Aldrich C4706-2G
Triton X-100 Fisher Bioreagents C34H622O11 Used during staining process
Trypan Blue Sigma-Aldrich T8154-20ML Used for cell culture work
0.05% Trypsin-EDTA Gibco 25-300-062 Used for cell culture work
Tween 20 Fisher Bioreagents C58H114O26 Used during staining process
Upright Microscope Olympus BX63F Fluorescent microscope capabilities
Water Bath PolyScience WBE20A11B
24-Well Tissue Culture Plates Corning 3527

Referências

  1. Ahrens, J. H., et al. Programming cellular alignment in engineered cardiac tissue via bioprinting anisotropic organ building blocks. Advanced Materials. 34 (26), e2200217 (2022).
  2. Lin, N. Y. C., et al. Renal reabsorption in 3D vascularized proximal tubule models. Proceedings of the National Academy of Sciences of the United States of America. 116 (12), 5399-5404 (2019).
  3. Grigoryan, B., et al. Multivascular networks and functional intravascular topologies within biocompatible hydrogels. Science. 364 (6439), 458-464 (2019).
  4. Kang, Y., Datta, P., Shanmughapriya, S., Ozbolat, I. T. 3D bioprinting of tumor models for cancer research. ACS Applied Biomaterials. 3 (9), 5552-5573 (2020).
  5. Davis-Hall, D., Thomas, E., Pena, B., Magin, C. M. 3D-bioprinted, phototunable hydrogel models for studying adventitial fibroblast activation in pulmonary arterial hypertension. Biofabrication. 15 (1), (2022).
  6. Mirdamadi, E., Tashman, J. W., Shiwarski, D. J., Palchesko, R. N., Feinberg, A. W. FRESH 3D bioprinting of a full-size model of the human heart. ACS Biomaterials Science & Engineering. 6 (11), 6453-6459 (2020).
  7. Shiwarski, D. J., Hudson, A. R., Tashman, J. W., Feinberg, A. W. Emergence of FRESH 3D printing as a platform for advanced tissue biofabrication. APL Bioengineering. 5 (1), 010904 (2021).
  8. Petrou, C. L., et al. Clickable decellularized extracellular matrix as a new tool for building hybrid hydrogels to model chronic fibrotic diseases in vitro. Journal of Materials Chemistry B. 8 (31), 6814-6826 (2020).
  9. Hewawasam, R. S., Blomberg, R., Serbedzija, P., Magin, C. M. Chemical modification of human decellularized extracellular matrix for incorporation into phototunable hybrid hydrogel models of tissue fibrosis. ACS Applied Materials & Interfaces. 15 (12), 15071-15083 (2023).
  10. Saleh, K. S., et al. Engineering hybrid hydrogels comprised healthy or diseased decellularized extracellular matrix to study pulmonary fibrosis. Cellular and Molecular Bioengineering. 15 (5), 505-519 (2022).
  11. Guvendiren, M., Burdick, J. A. Stiffening hydrogels to probe short- and long-term cellular responses to dynamic mechanics. Nature Communications. 3, 792 (2012).
  12. Rosales, A. M., Vega, S. L., DelRio, F. W., Burdick, J. A., Anseth, K. S. Hydrogels with reversible mechanics to probe dynamic cell microenvironments. Angewandte Chemie International Edition English. 56 (40), 12132-12136 (2017).
  13. Wynn, T. A., Ramalingam, T. R. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nature Medicine. 18 (7), 1028-1040 (2012).
  14. Huertas, A., Tu, L., Humbert, M., Guignabert, C. Chronic inflammation within the vascular wall in pulmonary arterial hypertension: more than a spectator. Cardiovascular Research. 116 (5), 885-893 (2020).
  15. Kendall, R. T., Feghali-Bostwick, C. A. Fibroblasts in fibrosis: novel roles and mediators. Frontiers in Pharmacology. 5, 123 (2014).
  16. Parker, M. W., et al. Fibrotic extracellular matrix activates a profibrotic positive feedback loop. The Journal of Clinical Investigation. 124 (4), 1622-1635 (2014).
  17. Habiel, D. M., Hogaboam, C. Heterogeneity in fibroblast proliferation and survival in idiopathic pulmonary fibrosis. Frontiers in Pharmacology. 5, 2 (2014).
  18. Hu, C. J., Zhang, H., Laux, A., Pullamsetti, S. S., Stenmark, K. R. Mechanisms contributing to persistently activated cell phenotypes in pulmonary hypertension. The Journal of Physiology. 597 (4), 1103-1119 (2019).
  19. Li, M., et al. Emergence of fibroblasts with a proinflammatory epigenetically altered phenotype in severe hypoxic pulmonary hypertension. The Journal of Immunology. 187 (5), 2711-2722 (2011).
  20. Hinton, T. J., et al. Three-dimensional printing of complex biological structures by freeform-reversible embedding of suspended hydrogels. Science Advances. 1 (9), e1500758 (2015).
  21. Brown, T. E., et al. Secondary photocrosslinking of click hydrogels to probe myoblast mechanotransduction in three dimensions. Journal of the American Chemical Society. 140 (37), 11585-11588 (2018).
  22. Ondeck, M. G., et al. Dynamically stiffened matrix promotes malignant transformation of mammary epithelial cells via collective mechanical signaling. Proceedings of the National Academy of Sciences of the United States of America. 116 (9), 3502-3507 (2019).
  23. Caliari, S. R., et al. Stiffening hydrogels for investigating the dynamics of hepatic stellate cell mechanotransduction during myofibroblast activation. Scientific Reports. 6, 21387 (2016).
  24. Liu, F., et al. Feedback amplification of fibrosis through matrix stiffening and COX-2 suppression. Journal of Cell Biology. 190 (4), 693-706 (2010).
  25. Tschumperlin, D. J., Ligresti, G., Hilscher, M. B., Shah, V. H. Mechanosensing and fibrosis. The Journal of Clinical Investigation. 128 (1), 74-84 (2018).
  26. Chelladurai, P., Seeger, W., Pullamsetti, S. S. Matrix metalloproteinases and their inhibitors in pulmonary hypertension. European Respiratory Journal. 40 (3), 766-782 (2012).
  27. Caracena, T., et al. Alveolar epithelial cells and microenvironmental stiffness synergistically drive fibroblast activation in three-dimensional hydrogel lung models. Biomaterials Science. 10 (24), 7133-7148 (2022).
  28. Ruskowitz, E. R., DeForest, C. A. Proteome-wide analysis of cellular response to ultraviolet light for biomaterial synthesis and modification. ACS Biomaterials Science & Engineering. 5 (5), 2111-2116 (2019).
  29. Kruse, C. R., et al. The effect of pH on cell viability, cell migration, cell proliferation, wound closure, and wound reepithelialization: In vitro and in vivo study. Wound Repair and Regeneration. 25 (2), 260-269 (2017).
  30. Filippi, M., et al. Perfusable biohybrid designs for bioprinted skeletal muscle tissue. Advanced Healthcare Materials. , e1500758 (2023).
  31. Matthiesen, I., et al. Astrocyte 3D culture and bioprinting using peptide-functionalized hyaluronan hydrogels. Science and Technology of Advanced Materials. 24 (1), 2165871 (2023).
  32. Xu, L., et al. Bioprinting a skin patch with dual-crosslinked gelatin (GelMA) and silk fibroin (SilMA): An approach to accelerating cutaneous wound healing. Materials Today Bio. 18, 100550 (2023).
  33. Bliley, J. M., Shiwarski, D. J., Feinberg, A. W. 3D-bioprinted human tissue and the path toward clinical translation. Science Translational Medicine. 14 (666), eabo7047 (2022).

Play Video

Citar este artigo
Tanneberger, A. E., Blair, L., Davis-Hall, D., Magin, C. M. 3D Bioprinting Phototunable Hydrogels to Study Fibroblast Activation. J. Vis. Exp. (196), e65639, doi:10.3791/65639 (2023).

View Video