Summary

3D-биопечать фотонастраиваемых гидрогелей для изучения активации фибробластов

Published: June 30, 2023
doi:

Summary

В данной статье описывается, как выполнить 3D-биопечать фотонастраиваемых гидрогелей для изучения жесткости внеклеточного матрикса и активации фибробластов.

Abstract

Фотонастраиваемые гидрогели могут трансформироваться пространственно и во времени в ответ на воздействие света. Включение этих типов биоматериалов в платформы клеточных культур и динамический запуск изменений, таких как увеличение жесткости микросреды, позволяет исследователям моделировать изменения во внеклеточном матриксе (ВКМ), которые происходят во время прогрессирования фиброзного заболевания. Представлен метод 3D-биопечати фотонастраиваемого гидрогелевого биоматериала, способного к двум последовательным реакциям полимеризации в ванне с желатиновой подложкой. Техника биопечати Freeform Reversible Embedding of Suspended Hydrogels (FRESH) была адаптирована путем регулировки pH опорной ванны для облегчения реакции присоединения по Майклу. Во-первых, биочернила, содержащие полиэтиленгликоль-альфа-метакрилат (ПЭГαМА), реагировали вне стехиометрии с клеточным разлагаемым сшивающим агентом с образованием мягких гидрогелей. Эти мягкие гидрогели позже подвергались воздействию фотоинициатора и света, чтобы вызвать гомополимеризацию непрореагировавших групп и сделать гидрогель более жестким. Этот протокол охватывает синтез гидрогеля, 3D-биопечать, фоторестирирование и характеризацию конечных точек для оценки активации фибробластов в 3D-структурах. Представленный здесь метод позволяет исследователям напечатать на 3D-принтере различные материалы, которые подвергаются реакциям полимеризации, катализируемым pH, и может быть реализован для создания различных моделей тканевого гомеостаза, заболеваний и репарации.

Introduction

3D-биопечать — это революционная технология, которая позволяет исследователям точно депонировать клетки и биоматериалы в 3D-объемах и воссоздавать сложную иерархическую структуру биологических тканей. За последнее десятилетие достижения в области 3D-биопечати позволили создать биющиеся сердечные тканичеловека1, функциональные модели тканей почек2, модели газообмена в легких3 и модели опухолей для исследования рака4. Изобретение встроенных методов 3D-биопечати, таких как реверсивное встраивание взвешенных гидрогелевых биопринтов Freeform (FRESH), позволило воспроизвести в 3D сложные структуры мягких тканей, такие как легочные кровеносные сосуды5 и даже человеческое сердце6 . 3D-биопечать FRESH облегчает послойную печать мягких и маловязких биочернил путем экструзии в поддерживающей ванне для разбавления сдвига. Опорная ванна состоит из такого материала, как плотно упакованные микрочастицы желатина, которые действуют как пластик Бингама и сохраняют заданную форму и структуру биочернил после печати. После того, как напечатанная конструкция затвердеет, опорную ванну можно растворить, повысив температуру до 37 °C7.

В недавней обзорной статье были обобщены материалы, которые были напечатаны на 3D-принтере в различных изданиях с использованием техники FRESH. Эти материалы природного происхождения варьируются от коллагена I типа до метакрилированной гиалуроновой кислоты и представляют собой несколько различных механизмов гелеобразования7. В большинстве исследований, проведенных с использованием этой техники 3D-биопечати, используются статические биоматериалы, которые не изменяются в ответ на внешние раздражители. Динамические фотонастраиваемые гидрогелевые биоматериалы были использованы нашей лабораторией и другими лабораториями 8,9,10,11,12 для моделирования различных фиброзных заболеваний. В отличие от статических биоматериалов, фотонастраиваемые биочернила позволяют создать размягченную модель с более низким значением модуля упругости, а затем сделать ее более жесткой для изучения клеточных реакций на увеличение жесткости в микросреде.

Фиброзные заболевания характеризуются увеличением выработки внеклеточного матрикса, что может вызвать рубцевание и скованность13. Огрубение тканей может инициировать дальнейшее повреждение и разрушение пораженных тканей, вызывая необратимое повреждение органов и даже смерть; Фиброзные заболевания являются причиной одной трети смертности во всем мире. Фибробласты продуцируют избыточный и аберрантный внеклеточный матрикс в этом болезненном состоянии14,15. Повышенная пролиферация фибробластов и отложение внеклеточного матрикса еще больше укрепляют ткань и активируют профибротическую петлю положительной обратной связи16,17,18,19. Изучение активации фибробластов имеет жизненно важное значение для понимания фиброзных заболеваний. Здесь мы представляем легочную артериальную гипертензию (ЛАГ) человека в качестве примера одного фиброзного заболевания, при котором важно имитировать 3D-геометрию кровеносного сосуда с помощью 3D-биопечати и внедрять динамические возможности жесткости фотонастраиваемых гидрогелей. ЛАГ – это состояние, при котором давление в основных легочных артериях превышает нормальный уровень и оказывает давление на сердце, увеличивая активацию адвентициальных фибробластов легочной артерии человека (HPAAF) и укрепляя ткани кровеносных сосудов16,17,18,19. Фотонастраиваемая формула биочернил на основе полиэтиленгликоля-альфа-метакрилата (ПЭГαМА) обеспечивает временное затвердевание конструкций и помогает моделировать как здоровые ткани, так и прогрессирование заболевания 5,8,9,10. Использование этой уникальной функции позволяет количественно оценить активацию и пролиферацию HPAAF в ответ на усиление микросреды в 3D и может дать ценную информацию о клеточных механизмах, участвующих в этом заболевании. Описанный здесь протокол позволит исследователям создавать 3D-модели, которые повторяют изменения во внеклеточном микроокружении во время прогрессирования заболевания или восстановления тканей и изучают активацию фибробластов.

Protocol

1. Синтез и характеристика ПЭГαМА ПРИМЕЧАНИЕ: Синтез поли(этиленгликоля)-альфа-метакрилата (ПЭГαМА) был адаптирован из Hewawasam et al . и осуществлялся в условиях отсутствия влаги9. Взвесьте реагенты.ПРИМЕЧАНИЕ: Например, взвесьте 5 г 10 кг/моль 8-…

Representative Results

Этот протокол описывает, как 3D-биопечать фотонастраиваемых гидрогелей в опорной ванне для создания конструкций, способных к динамическому и временному затвердеванию, для изучения активации фибробластов в геометрии, имитирующей ткани человека. Во-первых, протокол объяснял, как синтез?…

Discussion

Двухступенчатые реакции полимеризации в ответ на контролируемое воздействие света могут придать жесткость биоматериалам с пространственным и временным контролем. В нескольких исследованиях этот метод использовался для оценки взаимодействия клетки с матриксом на различных платфор?…

Declarações

The authors have nothing to disclose.

Acknowledgements

Авторы выражают благодарность доктору Адаму Файнбергу (Университет Карнеги-Меллона) и тем, кто провел семинар по 3D-биопечати с открытым исходным кодом. Эти люди позволили изучить методы биопечати FRESH и построить 3D-биопринтер, используемый для этих исследований. Кроме того, авторы хотели бы выразить признательность Biorender.com, которая была использована для создания рисунков в этой рукописи. Эта работа была поддержана несколькими группами или источниками финансирования, включая Фонд сообщества Роуз (DDH и CMM), Колорадскую премию за исследования легочных сосудистых заболеваний (DDH и CMM), Национальный научный фонд в рамках Премии 1941401 (CMM), Министерство армии США в рамках Гранта W81XWH-20-1-0037 (CMM), Национальный институт рака NIH в рамках Гранта R21 CA252172 (CMM), Центр исследований женского здоровья семьи Людеман в медицинском кампусе Аншутц Университета Колорадо (DDH и CMM), Национальный институт сердца, легких и крови Национальных институтов здравоохранения в рамках грантов R01 HL080396 (CMM), R01 HL153096 (CMM), F31 HL151122 (DDH) и T32 HL072738 (DDH и AT).

Materials

AccuMax Radiometer/Photometer Kit Spectronics Corporation XPR-3000 To measure light intensity, used for photostiffening
Acetic Acid  Fisher Scientific BP2401-500 Used during PEGaMA synthesis
Acetone Fisher Scientific A184 Used with the cryosections
ActinGreen 488 ReadyProbes Fisher Scientific R37110 Used for staining
Aluminum Foil Reynolds F28028
Anhydrous Tetrahydrofuran (THF) Sigma-Aldrich 401757-1L Used during PEGaMA synthesis
Argon Compressed Gas Airgas AR R300 Used during PEGaMA synthesis
8 Arm Poly(ethylene glycol)-hydroxyl (PEG-OH) JenKem Technology 8ARM-PEG-10K Used during PEGaMA synthesis
365 nm Bandpass Filter Edmund Optics 65-191 Used for photostiffening
Bovine Serum Albumin (BSA) Fisher Scientific BP9700-100 Used during staining process
Buchner Funnel Quark Glass QFN-8-14 Used during PEGaMA synthesis
Calcein AM Invitrogen 65-0853-39 Used during staining process
Celite 545 (Filtration Aid) EMD Millipore CX0574-1 Used during PEGaMA synthesis
Charged Microscope Slides Globe Scientific 1358W
Chloroform-d Sigma-Aldrich 151823-10X0.75ML Used to characterize PEGaMA
Click-iT Plus EdU Cell Proliferation Kit Invitrogen C10637 Used for staining
50 mL Conical Tubes CELLTREAT 667050B
Cryogenic Safety Kit Cole-Parmer EW-25000-85
Cryostat Leica CM 1850-3-1
Dialysis Tubing Repligen 132105
4’,6-Diamidino-2-Phylindole (DAPI) Sigma-Aldrich D9542-1MG Used for staining
Diethyl Ether Fisher Scientific E1384 Used during PEGaMA synthesis
1,4-Dithiothreitol (DTT)  Sigma-Aldrich 10197777001 Bioink component
Dulbecco's Modified Eagle's Medium (DMEM) Cytiva SH30271.FS
Ethyl 2-(Bromomethyl)Acrylate (EBrMA) Ambeed Inc. A918087-25g Used during PEGaMA synthesis
Filter Paper Whatman 1001-090 Used during PEGaMA synthesis
Freezone 2.5L Freeze Dry System Labconco LA-2.5LR Lyophilizer
Fusion 360 Autodesk N/A Software download
2.5 mL Gastight Syringe Hamilton 81420 Used for bioprinting
15 Gauge 1.5" IT Series Tip Jensen Global JG15-1.5X Used for bioprinting
30 Gauge 0.5" HP Series Tip Jensen Global JG30-0.5HPX Used for bioprinting
Goat Anti-Mouse Alexa Fluor 555 Antibody Fisher Scientific A21422 Used for staining
Glycine Fisher Scientific C2H5NO2 Used during staining process
Hemocytometer Fisher Scientific 1461
Hoechst Thermo Scientific 62249 Used during staining process
Human Pulmonary Artery Adventitial Fibroblasts (HPAAFs) AcceGen ABC-TC3773  From a 2-year-old male patient
Hydrochloric Acid (HCl) Fisher Scientific A144-500 Used to pH adjust solutions
ImageJ National Institutes of Health (NIH) N/A Free software download
ImmEdge® Pen Vector Laboratories H-4000 Used during staining process
Incubator VWR VWR51014991
LifeSupport Gelatin Microparticle Slurry (Gelatin Slurry) Advanced Biomatrix 5244-10GM Used for bioprinting
Light Microscope Olympus CKX53 Inverted light microscope
Lithium Phenyl-2,4,6-Trimethylbenzoylphosphinate (LAP) Sigma-Aldrich 900889-5G Photoinitiator used for photostiffening
Liquid Nitrogen N/A N/A
LulzBot Mini 2  LulzBot N/A Bioprinter adapted
Methacryloxyethyl Thiocarbamoyl Rhodamine B  Polysciences Inc. 669775-30-8
2-Methylbutane Sigma-Aldrich M32631-4L
Microman Capillary Pistons CP1000 VWR 76178-166 Positive displacement pipette tips
MMP2 Degradable Crosslinker (KCGGPQGIWGQGCK) GL Biochem N/A Bioink component
Mouse Anti-Human αSMA Monoclonal Antibody Fisher Scientific MA5-11547 Used for staining
OmniCure Series 2000  Lumen Dynamics S2000-XLA UV light source used for photostiffening
Paraformaldehyde (PFA)  Electron Microscopy Sciences 15710 Used to fix samples
pH Meter Mettler Toledo  FP20 
pH Strips Cytiva 10362010
Phosphate Buffered Saline (PBS) Hyclone Laboratories, Inc. Cytiva SH30256.FS
Pipette Set Fisher Scientific 14-388-100
10 µL Pipette Tips USA Scientific 1120-3710
20 µL Pipette Tips USA Scientific 1183-1510
200 µL Pipette Tips USA Scientific 1111-0700
1000 µL Pipette Tips USA Scientific 1111-2721
Poly(Ethylene Glycol)-Alpha Methacrylate (PEGαMA) N/A N/A Refer to manuscript for synthesis steps
Poly(Ethylene Oxide) (PEO) Sigma-Aldrich 372773-250G Bioink component
Positive Displacement Pipette Fisher Scientific FD10004G 100-1000 µL
Potassium Hydroxide (KOH) Sigma-Aldrich 221473-500G Used to pH adjust solutions
ProLong Gold Antifade Reagent Invitrogen P36930 Used during staining process
Pronterface All3DP N/A Software download
Propidium Iodide Sigma-Aldrich P4864-10ML Used for staining
RGD Peptide (CGRGDS) GL Biochem N/A Bioink component
Rocker VWR 10127-876
Rotary Evaporator  Thomas Scientific 11100V2022 Used during PEGaMA synthesis
Rubber Band Staples 808659
Schlenk Flask  Kemtech America F902450 Used during PEGaMA synthesis
Slic3r Slic3r N/A Software download
Smooth Muscle Cell Growth Medium-2 (SmGM-2) BulletKit Lonza CC-3182 Kit contains CC-3181 and CC-4149 components
Sodium Hydride  Sigma-Aldrich 223441-50G Used during PEGaMA synthesis
Sorvall ST 40R Centrifuge Fisher Scientific 75-004-525
Stir Bar VWR 58948-091
Syringe Filter VWR 28145-483 Used to sterile filter solutions
T-75 Tissue-Cultured Treated Flask VWR 82050-856 Used for cell culture work
Tissue-Tek Cyromold Sakura 4557
Tissue-Tek O.C.T Compound (OCT) Sakura 4583
Tris(2-Carboxyethyl) Phosphine (TCEP) Sigma-Aldrich C4706-2G
Triton X-100 Fisher Bioreagents C34H622O11 Used during staining process
Trypan Blue Sigma-Aldrich T8154-20ML Used for cell culture work
0.05% Trypsin-EDTA Gibco 25-300-062 Used for cell culture work
Tween 20 Fisher Bioreagents C58H114O26 Used during staining process
Upright Microscope Olympus BX63F Fluorescent microscope capabilities
Water Bath PolyScience WBE20A11B
24-Well Tissue Culture Plates Corning 3527

Referências

  1. Ahrens, J. H., et al. Programming cellular alignment in engineered cardiac tissue via bioprinting anisotropic organ building blocks. Advanced Materials. 34 (26), e2200217 (2022).
  2. Lin, N. Y. C., et al. Renal reabsorption in 3D vascularized proximal tubule models. Proceedings of the National Academy of Sciences of the United States of America. 116 (12), 5399-5404 (2019).
  3. Grigoryan, B., et al. Multivascular networks and functional intravascular topologies within biocompatible hydrogels. Science. 364 (6439), 458-464 (2019).
  4. Kang, Y., Datta, P., Shanmughapriya, S., Ozbolat, I. T. 3D bioprinting of tumor models for cancer research. ACS Applied Biomaterials. 3 (9), 5552-5573 (2020).
  5. Davis-Hall, D., Thomas, E., Pena, B., Magin, C. M. 3D-bioprinted, phototunable hydrogel models for studying adventitial fibroblast activation in pulmonary arterial hypertension. Biofabrication. 15 (1), (2022).
  6. Mirdamadi, E., Tashman, J. W., Shiwarski, D. J., Palchesko, R. N., Feinberg, A. W. FRESH 3D bioprinting of a full-size model of the human heart. ACS Biomaterials Science & Engineering. 6 (11), 6453-6459 (2020).
  7. Shiwarski, D. J., Hudson, A. R., Tashman, J. W., Feinberg, A. W. Emergence of FRESH 3D printing as a platform for advanced tissue biofabrication. APL Bioengineering. 5 (1), 010904 (2021).
  8. Petrou, C. L., et al. Clickable decellularized extracellular matrix as a new tool for building hybrid hydrogels to model chronic fibrotic diseases in vitro. Journal of Materials Chemistry B. 8 (31), 6814-6826 (2020).
  9. Hewawasam, R. S., Blomberg, R., Serbedzija, P., Magin, C. M. Chemical modification of human decellularized extracellular matrix for incorporation into phototunable hybrid hydrogel models of tissue fibrosis. ACS Applied Materials & Interfaces. 15 (12), 15071-15083 (2023).
  10. Saleh, K. S., et al. Engineering hybrid hydrogels comprised healthy or diseased decellularized extracellular matrix to study pulmonary fibrosis. Cellular and Molecular Bioengineering. 15 (5), 505-519 (2022).
  11. Guvendiren, M., Burdick, J. A. Stiffening hydrogels to probe short- and long-term cellular responses to dynamic mechanics. Nature Communications. 3, 792 (2012).
  12. Rosales, A. M., Vega, S. L., DelRio, F. W., Burdick, J. A., Anseth, K. S. Hydrogels with reversible mechanics to probe dynamic cell microenvironments. Angewandte Chemie International Edition English. 56 (40), 12132-12136 (2017).
  13. Wynn, T. A., Ramalingam, T. R. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nature Medicine. 18 (7), 1028-1040 (2012).
  14. Huertas, A., Tu, L., Humbert, M., Guignabert, C. Chronic inflammation within the vascular wall in pulmonary arterial hypertension: more than a spectator. Cardiovascular Research. 116 (5), 885-893 (2020).
  15. Kendall, R. T., Feghali-Bostwick, C. A. Fibroblasts in fibrosis: novel roles and mediators. Frontiers in Pharmacology. 5, 123 (2014).
  16. Parker, M. W., et al. Fibrotic extracellular matrix activates a profibrotic positive feedback loop. The Journal of Clinical Investigation. 124 (4), 1622-1635 (2014).
  17. Habiel, D. M., Hogaboam, C. Heterogeneity in fibroblast proliferation and survival in idiopathic pulmonary fibrosis. Frontiers in Pharmacology. 5, 2 (2014).
  18. Hu, C. J., Zhang, H., Laux, A., Pullamsetti, S. S., Stenmark, K. R. Mechanisms contributing to persistently activated cell phenotypes in pulmonary hypertension. The Journal of Physiology. 597 (4), 1103-1119 (2019).
  19. Li, M., et al. Emergence of fibroblasts with a proinflammatory epigenetically altered phenotype in severe hypoxic pulmonary hypertension. The Journal of Immunology. 187 (5), 2711-2722 (2011).
  20. Hinton, T. J., et al. Three-dimensional printing of complex biological structures by freeform-reversible embedding of suspended hydrogels. Science Advances. 1 (9), e1500758 (2015).
  21. Brown, T. E., et al. Secondary photocrosslinking of click hydrogels to probe myoblast mechanotransduction in three dimensions. Journal of the American Chemical Society. 140 (37), 11585-11588 (2018).
  22. Ondeck, M. G., et al. Dynamically stiffened matrix promotes malignant transformation of mammary epithelial cells via collective mechanical signaling. Proceedings of the National Academy of Sciences of the United States of America. 116 (9), 3502-3507 (2019).
  23. Caliari, S. R., et al. Stiffening hydrogels for investigating the dynamics of hepatic stellate cell mechanotransduction during myofibroblast activation. Scientific Reports. 6, 21387 (2016).
  24. Liu, F., et al. Feedback amplification of fibrosis through matrix stiffening and COX-2 suppression. Journal of Cell Biology. 190 (4), 693-706 (2010).
  25. Tschumperlin, D. J., Ligresti, G., Hilscher, M. B., Shah, V. H. Mechanosensing and fibrosis. The Journal of Clinical Investigation. 128 (1), 74-84 (2018).
  26. Chelladurai, P., Seeger, W., Pullamsetti, S. S. Matrix metalloproteinases and their inhibitors in pulmonary hypertension. European Respiratory Journal. 40 (3), 766-782 (2012).
  27. Caracena, T., et al. Alveolar epithelial cells and microenvironmental stiffness synergistically drive fibroblast activation in three-dimensional hydrogel lung models. Biomaterials Science. 10 (24), 7133-7148 (2022).
  28. Ruskowitz, E. R., DeForest, C. A. Proteome-wide analysis of cellular response to ultraviolet light for biomaterial synthesis and modification. ACS Biomaterials Science & Engineering. 5 (5), 2111-2116 (2019).
  29. Kruse, C. R., et al. The effect of pH on cell viability, cell migration, cell proliferation, wound closure, and wound reepithelialization: In vitro and in vivo study. Wound Repair and Regeneration. 25 (2), 260-269 (2017).
  30. Filippi, M., et al. Perfusable biohybrid designs for bioprinted skeletal muscle tissue. Advanced Healthcare Materials. , e1500758 (2023).
  31. Matthiesen, I., et al. Astrocyte 3D culture and bioprinting using peptide-functionalized hyaluronan hydrogels. Science and Technology of Advanced Materials. 24 (1), 2165871 (2023).
  32. Xu, L., et al. Bioprinting a skin patch with dual-crosslinked gelatin (GelMA) and silk fibroin (SilMA): An approach to accelerating cutaneous wound healing. Materials Today Bio. 18, 100550 (2023).
  33. Bliley, J. M., Shiwarski, D. J., Feinberg, A. W. 3D-bioprinted human tissue and the path toward clinical translation. Science Translational Medicine. 14 (666), eabo7047 (2022).
check_url/pt/65639?article_type=t

Play Video

Citar este artigo
Tanneberger, A. E., Blair, L., Davis-Hall, D., Magin, C. M. 3D Bioprinting Phototunable Hydrogels to Study Fibroblast Activation. J. Vis. Exp. (196), e65639, doi:10.3791/65639 (2023).

View Video