Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Biology

ReAsH / Flash Маркировка и анализ изображений белков Tetracysteine ​​датчика в клетках

Published: August 31, 2011 doi: 10.3791/2857

Summary

Biarsenical красителей вспышкой и ReAsH специфично связываются с tetracysteine ​​мотивов в белках и может выборочно этикетке белков в живых клетках. В последнее время эта маркировка стратегия была использована для разработки датчиков для различных конформаций белков или олигомерных государств. Мы описываем маркировки подход и методы количественного анализа связывания.

Abstract

Флуоресцентные белки и красителей являются необходимыми инструментами для исследования белков торговли людьми, локализации и функции в клетках. Хотя флуоресцентные белки, такие как зеленая флуоресценция белка (GFP), широко использовались в качестве партнеров для слияния белков отслеживать свойства белка интересов 1, последние события с меньшей теги позволяют новых функциональных белков должны быть рассмотрены в клетках, таких как изменение конформации и белково-ассоциации 2, 3. Одна маленькая система включает в себя теги tetracysteine ​​мотив (CCXXCC) генетически вставляется в целевой белок, который связывается с biarsenical красители, ReAsH (красный флуоресцентный) и Flash (зеленый флуоресцентный), с высокой специфичностью даже в живые клетки 2. TC / biarsenical красителя система предлагает гораздо меньше стерических ограничений на хост белка, чем флуоресцентные белки, что позволило несколько новых подходов для оценки конформационных изменений и белок-белковых взаимодействий 4-7. Недавно мы разработали новое применение ТК теги как датчики олигомеризации в клетках, экспрессирующих мутантный Huntingtin, который при мутировал агрегатов в нейронах в Хантингтон болезни 7. Huntingtin была помечена с двумя флуоресцентными красителями, один флуоресцентный белок отслеживать местоположение белка, а второй теги TC которые только связывает biarsenical красителей в мономеров. Следовательно, изменения в колокализации между белком и biarsenical красителя реактивность включен субмикроскопических содержание олигомеров быть пространственно отображается внутри клеток. Здесь мы опишем, как этикетка TC-меткой белков, слитый с флуоресцентный белок (вишня, GFP или CFP) со вспышкой или ReAsH в живых клетках млекопитающих и как количественно два цвета флуоресценции (вишня / Flash, CFP / Flash или GFP / ReAsH комбинации).

Protocol

1. Подготовка клеток для маркировки с ReAsH / Flash

  1. Используя стандартные методы клеточной культуры для вашего клеточной линии интересов, подготовить культуры прилипшие клетки непосредственно в живых изображений слайд клетка готова к трансфекции.
  2. Трансфекции плазмиды, содержащей вашего ТС с метками интересующего гена в соответствии с вашими трансфекции методом выбора.

Обратите внимание, важно использовать положительный и отрицательный контроль, чтобы оценить степень специфического связывания с TC-теги и оценить для bleedthrough флуоресценции между каналами при сборе конфокальной микроскопии. Таким образом, для двух цветов (например, Flash / Cherry или ReAsH / CFP или ReAsH / GFP комбинаций), убедитесь, образцы подготовлены для одного цвета (например, флуоресцентный белок в одиночку или, если возможно TC-меткой белок связан с Flash / ReAsH но без флуоресцентного белка)

  1. От одного до двух дней после трансфекции, осторожно промыть клетки с 300 мкл предварительно нагревается (при 37 ° С) HBSS.
  2. Осторожно погрузите клеток с 1 мкМ Flash (или ReAsH) в 300 мкл предварительно нагретого HBSS и 10 мкМ 1,2-этандитиола (EDT).

Важно, чтобы добавить EDT первых, прежде чем добавлять Flash / ReAsH и сделать буфера непосредственно перед добавлением его в клетки. Инкубировать ровно 30 минут при температуре 37 ° С в культуре ткани инкубатора. По нашему опыту более длительное время инкубации значительно увеличивает фоновой флуоресценции. Новые конструкции также должны быть оптимизированы для маркировки времени и Flash / ReAsH концентрации (0,5-2 мкм).

  1. Аккуратно аспирата маркировки решение из клеток, а затем заменить на 300 мкл предварительно нагретого HBSS + 250 мкМ 2,3-dimercaptopropanol (БАЛ) в течение 15 минут при температуре 37 ° C.
  2. Удалить промывочного раствора, осторожно стремление и заменить 300 мкл предварительно нагретого HBSS.

После этого вымыть, клетки могут быть исправлены с помощью параформальдегида (15 мин с 3,2% раствора), хотя мы обнаружили, что это повышает неспецифическую biarsenical флуоресценции красителя. Поэтому мы обычно изображение клетки живут при комнатной температуре. (Заметим, что фиксация клеток перед маркировки предотвращает biarsenical обязательным красителя.)

2. Изображений клеток на конфокальной микроскопии

  1. На конфокальной микроскопии, настроить параметры для работы с изображениями отдельных флуорофоров (см. таблицу 1) и убедитесь, что есть незначительное bleedthrough между каналами. Это может быть достигнуто путем проверки отдельных флуорофоров (в контрольных образцах) в отношении каждого отдельного люминесцентные настройки приобретение для флуоресценции. Регулировка диапазона длины волны излучения может помочь свести к минимуму bleedthrough (хотя это может также уменьшить сигнал / шум).
  2. Также регулировать ФЭУ параметры так, чтобы максимально флуоресценции в образце не насыщает детектора. (Это может быть обнаружены с помощью Q-LUT установки на SP2 Leica конфокальной). Как только оптимальные настройки изображения определяется, не меняют любой из них между образцами.
  3. Другие параметры, которые мы обычно используем (хотя они могут быть оптимизированы) являются скорости сканирования 200 Гц и собрать 4 линии средних и отверстие диаметром 1 Эйри единицы. Отверстие диаметром может быть расширена, если сигнал / шум является проблемой, однако, это может привести к некоторой потере изображения.
  4. Сбор конфокальных изображений в 12-бит (или выше) формат, если это возможно. 12-битный формат захватывает более широкий динамический диапазон значений (0-4095) для каждого пикселя интенсивностью, чем 8-разрядный (0-255). Это важно для обеспечения богатым набором данных записывается, которая максимизирует качество количественного анализа данных.
  5. Сбор изображения для флуоресцентной канала белка (вишня, GFP или CFP), а также для biarsenical канале красителя (Flash или ReAsH) для всех образцов.

3. Анализ данных

  1. Установка программного обеспечения ImageJ на компьютере 8. http://rsbweb.nih.gov/ij/
  2. Убедитесь, что ваша версия ImageJ имеет следующие модули:
  3. Открытое ImageJ, и если используете версию старше v1.32c, нажмите на следующие параметры, чтобы включить несколько изображений должен быть открыт в свое время (которое может быть сделано, удерживая нажатой кнопку управления, щелкните на разных файлов):
    Рисунок 1
  4. Открытые изображения интереса к ImageJ.
    ImageJ будет автоматически определять максимальные и минимальные интенсивности пикселов, которые отображаются на экране для каждого изображения отдельно. Учитывая, что различные изображения будут иметь гifferent интенсивности пикселей, это означает, отображаемые изображения не являются сопоставимыми, если смотреть.
  5. Чтобы обеспечить открытые изображения все по той же шкале, вы можете физически определить верхнюю и нижнюю интенсивностей пикселей для просмотра (это не изменит фактического содержания данных изображения как бы в некоторых других программ). Эти значения могут быть установлены в следующее меню:
    Рисунок 2
  6. Альтернативный подход заключается в работе с магазином, который помещает все изображения в один файл и автоматически шкале (для просмотра) всех изображений в стек в том же масштабе. Самый простой способ работы с данными, является преобразование каждого канала для стека. Таким образом, для флуоресцентного белка канал преобразовать все сложить, как показано на рисунке. Вы можете легко выбрать один канал, складывая все изображения, содержащие общее название (например, "ch00») в названии.
    Рисунок 3
  7. Теперь конвертировать все открытые изображения в 8-битные для анализа. Это на самом деле изменить масштаб просмотра в диапазоне 0-255 диапазон (который определяет 8-бит).
    ВАЖНО: Не экономьте на оригинальных 12-бит (или выше) формат, иначе вы потеряете информационное содержание. Заметим, что некоторые пакеты программного обеспечения может отображать только 8-битные изображения, таким образом этот формат является полезной для принятия цифры и т.д.
    Рисунок 4
  8. Сохранить копию в новую папку под названием "8-битные превращается" с помощью "Сохранить как ..." вариант.
  9. Один из методов для изучения степени biarsenical обязательным красителя в целом изображение для выполнения пикселей участок корреляции интенсивности. Это участки каждого пиксела значения в одном канале относительно соответствующего значения пиксела в второго канала. Следовательно, пиксел позицию высоко в CFP флуоресценции также будет высоким в флуоресценции ReAsH, если существует высокая обязательными.
  10. Для анализа пикселей со-корреляции, убедитесь, что 8-битный ReAsH и Cerulean / GFP изображений, открытых в ImageJ.
  11. Откройте «Изображение Correlator" плагин, как указано ниже. Выберите "Image1", как ReAsH или флэш-стек и "image2" в качестве флуоресцентного белка стек.
    Рисунок 5
  12. В результате стек могут не отображать никакой детальной информации - это нормально. Сохранить стек в новую папку под названием "диаграммы рассеяния" и дать ему то же имя файла в качестве образца он относится к (например, "флэш-вишневый корреляции заговор")
  13. Для просмотра данных осмысленно вы можете сделать одно из двух вариантов. Первое преобразование данных, с тем, что именно в формат журнала. Затем визуально масштабировать данные следующим образом:
    Рисунок 6
  14. Кроме того, можно масштабировать данные наглядно показывают только низкие значения (например, 1-255) и отображать данные, используя специальные LUT. LUT (Look Up Table) представляет собой таблицу цветов, которые возложены на величину каждого пиксела в изображении . Это может быть использовано для определения псевдо-схему изображения и полезно для определения некоторых функций в изображении. Чтобы создать пользовательскую кнопку LUT на "LUT редактор" и сделать новую, таких как показано (это могут быть сохранены и использованы в дальнейшем).
    Рисунок 7
  15. Установить яркость / контрастность в диапазоне от 0-255 (как описано в пункте 13 выше). Чтобы "зафиксировать" изображение как показанному на экране, изображение может быть преобразовано в RGB-формат, который сохраняет 8-разрядное значение для каждого из красного, зеленого и синего цвета каждого пикселя.
    Рисунок 8
    Чтобы копировать и вставлять изображения в другие программы, первый открытый 8-битной или 16-битными изображениями. Как указано в пункте 14 выше, назначить схему LUT цвета изображения. Для CFP, назначить "голубой" LUT, как описано ниже ...
    Рисунок 9
  16. Выберите изображение и скопировать его в буфер обмена, выберите ...

4. Представитель результаты:

Успех маркировки клеток с biarsenical красителей зависит от нескольких ключевых параметров. Во-первых, сроки маркировки с красителями имеет решающее значение. Мы обнаружили, что длительное маркировки (более 30 мин) приводит к высокому уровню неспецифический фон окрашивания. Рис 1 показан типичный результат для дикого типа форме фрагмента Huntingtin (25Q), слитый с CFP производных Cerulean содержащие теги TC, как описано выше 7. Этот пример был залит в течение 30 мин с ReAsH и есть минимальный опыт работы в образце отсутствуют теги ТС. Мы обнаружили, что фиксация клеток с фоном параформальдегида увеличивается, а фиксация с метанолом отменяет флуоресценции флуоресцентного белка теги. Следовательно, где возможно, мы изображение клетки живут. Важно также отметить, что до фиксациик маркировке с biarsenical красителей предотвращает их обязательными, предположительно из-за модификаций ТС мотив.

Другим важным фактором для последовательного результатов плотность клеток. Мы нашли это важно для изображения клеток, которые свободно распространяются и также, что обширные наносить удар может привести к неравномерной окраски biarsenical красителей в разных клетках.

Рисунок 1
Рисунок 1. Tetracysteine ​​теги и ReAsH окрашивания в живых клетках, трансфицированных Huntingtin (exon1-25Q)-Лазурная слияний. Теги ТС находится на стыке Huntingtin-Лазурная синтеза (как описано в разделе 7). Пиксель участка корреляции интенсивности позволяет оценить различия в ReAsH обязательную силу на всей клетке и может быть использован для отображения изменений в ReAsH обязательными из-за конформационных изменений или лиганд.

Subscription Required. Please recommend JoVE to your librarian.

Discussion

Подход к этикетке локализации белка с флуоресцентным белком и конформационные свойства со вторым красителем предлагает большой потенциал для отображения, где разные конформации белков накапливаются в клетках и события, которые изменяют динамику конформации белка. ReAsH / Flash был впервые использован как в ячейках датчик для сворачивания белков млекопитающих сотовой ретиноевая кислота-белок I 4. В этом примере, вспышка связана с тегом ТС разработан в клеточные ретиноевая кислота-белок я сократил выход флуоресценции в сложенном виде по отношению к разложенном виде, и складные можно было проследить в E. кишечной клетки. Совсем недавно складывания белка и самоассоциации была продемонстрирована в модельных белков двудольными дисплей tetracysteine ​​6. В этом примере дистальной пары dicysteine ​​от модели пептиды были приведены в непосредственной близости от связывания двух пептидов, содержащих dicysteine ​​пар, или складывания пептид, который воссоздает функциональных мотив tetracysteine ​​для связывания biarsenical красителей. Мы взяли этот подход на один шаг дальше, разрабатывая датчики, которые отличают мономеров из олигомеров из-за теги ТС становится окклюзии от biarsenical связывание красителя во всех олигомерные формы 7.

Несмотря на потенциальную ТК-теги и biarsenical красителей в качестве репортеров для конформационных изменений и ассоциаций, методология страдает от того, сравнительно низким отношением сигнал / шум сигнала по сравнению с флуоресцентных белков в результате базовый фоновой флуоресценции 9. Таким образом, в усилиях по развитию конформации датчиков было бы целесообразным, чтобы протестировать некоторые другие новые подходы маркировки в стадии разработки, такие как инженерной лигазы флуорофора, что конъюгаты производных кумарина на 13 аминокислотных пептидной последовательности 3.

Анализ, представленный здесь, может быть расширена для выяснения, где в клетках происходят различия в связывании ReAsH / Flash для белок. Для этого изображения можно разделить на субрегионов путем создания областей интереса (ROI) и преобразования их в маски для фильтрации различных частей изображения (это может быть сделано в ImageJ). Таким образом, путем сравнения интенсивности пикселя участков должна быть возможность для статистической оценки различий между внутриклеточными субрегионов использованием датчиков.

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

Нет конфликта интересов объявлены.

Acknowledgments

Эта работа финансировалась за счет грантов для ДМГ и TDM (NHMRC проекту гранты). ДМГ является Гримвад сотрудник, финансируемый Miegunyah Trust.

Materials

Name Company Catalog Number Comments
8-well μ-slides Ibidi 80826 We find these chamber slides to be particularly useful for culturing cells for imaging.
TC-FlAsH II In-cell Tetracysteine Tag Detection Kit *green fluorescence* *for live-cell imaging Invitrogen T34561 (FlAsH) or T34562 (ReAsH)
Hanks’ Balanced Salt Solution Invitrogen 14175-103
2,3-Dimercapto-1-propanol Sigma-Aldrich D1129-5ML
1,2-Ethanedithiol Sigma-Aldrich 02390-25ML

DOWNLOAD MATERIALS LIST

References

  1. Tsien, R. Y. The green fluorescent protein. Ann. Rev. Biochem. 67, 509-544 (1998).
  2. Griffin, B. A., Adams, S. R., Tsien, R. Y. Specific covalent labeling of recombinant protein molecules inside live cells. Science. 281, 269-2672 (1998).
  3. Uttamapinant, C. A fluorophore ligase for site-specific protein labeling inside living cells. Proc. Natl. Acad. Sci. USA. 107, 10914-10919 (2010).
  4. Ignatova, Z., Gierasch, L. M. Monitoring protein stability and aggregation in vivo by real-time fluorescent labeling. Proc. Natl. Acad. Sci. USA. 101, 523-528 (2004).
  5. Coleman, B. M. Conformational detection of prion protein with biarsenical labeling and FlAsH fluorescence. Biochem. Biophys. Res. Commun. 380, 564-568 (2009).
  6. Luedtke, N. W., Dexter, R. J., Fried, D. B., Schepartz, A. Surveying polypeptide and protein domain conformation and association with FlASH and ReAsH. Nat. Chem. Biol. 3, 779-784 (2007).
  7. Ramdzan, Y. M. Conformation sensors that distinguish monomeric proteins from oligomers in live cells. Chem. Biol. 17, 371-379 (2010).
  8. Abramoff, M. agelhaes, PJ, S. J. R. am Image processing with ImageJ. Biophotonics International. 11, 36-42 (2004).
  9. Hearps, A. The biarsenical dye Lumio exhibits a reduced ability to specifically detect tetracysteine-containing proteins within live cells. J. Fluor. 17, 593-597 (2007).
  10. Adams, S. R. New biarsenical ligands and tetracysteine motifs for protein labeling in vitro and in vivo: Synthesis and biological applications. J. Am. Chem. Soc. 124, 6063-6076 (2002).
  11. Shaner, N. C., Steinbach, P. A., Tsien, R. Y. A guide to choosing fluorescent proteins. Nat. Meth. 2, 905-909 (2005).

Tags

Клеточной биологии выпуск 54 tetracysteine TC ReAsH Flash biarsenical красителей флуоресценция изображений конфокальной микроскопии ImageJ GFP
ReAsH / Flash Маркировка и анализ изображений белков Tetracysteine ​​датчика в клетках
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Irtegun, S., Ramdzan, Y. M.,More

Irtegun, S., Ramdzan, Y. M., Mulhern, T. D., Hatters, D. M. ReAsH/FlAsH Labeling and Image Analysis of Tetracysteine Sensor Proteins in Cells. J. Vis. Exp. (54), e2857, doi:10.3791/2857 (2011).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter