Summary

मॉडलिंग और 3 - आयामी इमेजिंग कलेक्टिव सेल आक्रमण

Published: December 07, 2011
doi:

Summary

तीन आयामी मैट्रिक्स कोशिकी में ट्यूमर सेल आक्रमण के मॉडल बेहतर प्रतिबिंबित<em> Vivo में</em> दो आयामी गतिशीलता assays की तुलना में स्थिति है. मैट्रिक्स आक्रमण fluorescently लेबल कोशिकाओं आक्रमण मोड और प्रमुख बनाम निम्नलिखित कोशिकाओं के विशिष्ट योगदान पर विस्तृत जानकारी के confocal इमेजिंग के साथ संयुक्त assays का उपयोग प्राप्त किया जा सकता है.

Abstract

A defining characteristic of cancer malignancy is invasion and metastasis 1. In some cancers (e.g. glioma 2), local invasion into surrounding healthy tissue is the root cause of disease and death. For other cancers (e.g. breast, lung, etc.), it is the process of metastasis, in which tumor cells move from a primary tumor mass, colonize distal sites and ultimately contribute to organ failure, that eventually leads to morbidity and mortality 3. It has been estimated that invasion and metastasis are responsible for 90% of cancer deaths 4. As a result, there has been intense interest in identifying the molecular processes and critical protein mediators of invasion and metastasis for the purposes of improving diagnosis and treatment 5.

A challenge for cancer scientists is to develop invasion assays that sufficiently resemble the in vivo situation to enable accurate disease modeling 6. Two-dimensional cell motility assays are only informative about one aspect of invasion and do not take into account extracellular matrix (ECM) protein remodeling which is also a critical element. Recently, research has refined our understanding of tumor cell invasion and revealed that individual cells may move by elongated or rounded modes 7. In addition, there has been greater appreciation of the contribution of collective invasion, in which cells invade in strands, sheets and clusters, particularly in highly differentiated tumors that maintain epithelial characteristics, to the spread of cancer 8.

We present a refined method 9 for examining the contributions of candidate proteins to collective invasion 10. In particular, by engineering separate pools of cells to express different fluorescent proteins, it is possible to molecularly dissect the activities and proteins required in leading cells versus those required in following cells. The use of RNAi provides the molecular tool to experimentally disassemble the processes involved in individual cell invasion as well as in different positions of collective invasion. In this procedure, mixtures of fluorescently-labeled cells are plated on the bottom of a Transwell insert previously filled with Matrigel ECM protein, then allowed to invade “upwards” through the filter and into the Matrigel. Reconstruction of z-series image stacks, obtained by confocal imaging, into three-dimensional representations allows for visualization of collectively invading strands and analysis of the representation of fluorescently-labeled cells in leading versus following positions.

Protocol

1. फ्लोरोसेंट प्रोटीन के साथ कोशिकाओं के रेट्रोवायरल लेबलिंग प्लेट 0.25 x 10 6 कोशिकाओं पर प्रति अच्छी तरह से एक 6-अच्छी तरह से बाहर रेट्रोवायरल पैकेजिंग कोशिकाओं (जैसे फीनिक्स) 10% भ्रूण गोज…

Discussion

Matrigel आक्रमण assays के परंपरागत chemoattractant प्रेरित गतिशीलता के साथ बाह्य मैट्रिक्स प्रोटीन की एक दिशा में परत पर रखा और नीचे में एक फिल्टर के माध्यम से कोशिकाओं के साथ किया गया है स्थापित. Invasiveness कितने कोशिकाओं को फ…

Disclosures

The authors have nothing to disclose.

Acknowledgements

इस शोध के लिए अनुदान कैंसर रिसर्च यूके से है.

Materials

Name of the reagent Company Catalogue number
DMEM (Dulbecco’s Modified Eagle’s Medium) GIBCO 21969
Fetal Bovine Serum PAA A15-101
Penicillin Streptomycin GIBCO 15140
200 mM L-Glutamine (100x) GIBCO 25050-032
Puromycin Sigma-Aldrich P8833
0.05% Trypsin EDTA GIBCO 25300
Polybrene Sigma-Aldrich AL-118
Lipofectamine 2000 Reagent Invitrogen 11668019
6.5mm Transwells, 8.0 µm pore size Corning 3422
Complete Matrigel BD Biosciences 354234
Calcein AM Invitrogen C1430
RNase Qiagen 19101
Propidium Iodide Sigma-Aldrich P4864
Confocal microcope Leica SP2MP

References

  1. Olson, M. F., Sahai, E. The actin cytoskeleton in cancer cell motility. Clin. Exp. Metastasis. 26, 273-287 (2008).
  2. Hoelzinger, D. B., Demuth, T., Berens, M. E. Autocrine factors that sustain glioma invasion and paracrine biology in the brain microenvironment. J. Natl. Cancer. Inst. 99, 1583-1593 (2007).
  3. Chaffer, C. L., Weinberg, R. A. A perspective on cancer cell metastasis. Science. 331, 1559-1564 (2011).
  4. Hanahan, D., Weinberg, R. A. The Hallmarks of Cancer. Cell. 100, 57-70 (2000).
  5. Francia, G., Cruz-Munoz, W., Man, S., Xu, P., Kerbel, R. S. Mouse models of advanced spontaneous metastasis for experimental therapeutics. Nat. Rev. Cancer. 11, 135-141 (2011).
  6. Hooper, S., Marshall, J. F., Sahai, E. Tumor cell migration in three dimensions. Methods. Enzymol. 406, 625-643 (2006).
  7. Croft, D. R., Olson, M. F. Regulating the conversion between rounded and elongated modes of cancer cell movement. Cancer Cell. 14, 349-351 (2008).
  8. Wolf, K. Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. Nat. Cell. Biol. 9, 893-904 (2007).
  9. Hennigan, R. F., Hawker, K. L., Ozanne, B. W. Fos-transformation activates genes associated with invasion. Oncogene. 9, 3591-3600 (1994).
  10. Scott, R. W. LIM kinases are required for invasive path generation by tumor and tumor-associated stromal cells. J. Cell. Biol. 191, 169-185 (2010).
check_url/3525?article_type=t

Play Video

Cite This Article
Scott, R. W., Crighton, D., Olson, M. F. Modeling and Imaging 3-Dimensional Collective Cell Invasion. J. Vis. Exp. (58), e3525, doi:10.3791/3525 (2011).

View Video