Summary

प्रांतस्था संगठन और गतिशीलता के सूक्ष्मजीवों में दृश्य, कुल आंतरिक प्रतिबिंब प्रतिदीप्ति माइक्रोस्कोपी का उपयोग

Published: May 01, 2012
doi:

Summary

कुल आंतरिक प्रतिबिंब प्रतिदीप्ति माइक्रोस्कोपी (TIRF) संरचनाओं उच्च विपरीत और लौकिक संकल्प में कोशिका की सतह के करीब निरीक्षण के लिए एक शक्तिशाली तरीका है. हम प्रदर्शन कैसे TIRF दीवार संलग्न सेल बैक्टीरियल और फंगल कोशिकाओं के प्रांतस्था में प्रोटीन की गतिशीलता का अध्ययन करने के लिए नियोजित किया जा सकता है.

Abstract

TIRF microscopy has emerged as a powerful imaging technology to study spatio-temporal dynamics of fluorescent molecules in vitro and in living cells1. The optical phenomenon of total internal reflection occurs when light passes from a medium with high refractive index into a medium with low refractive index at an angle larger than a characteristic critical angle (i.e. closer to being parallel with the boundary). Although all light is reflected back under such conditions, an evanescent wave is created that propagates across and along the boundary, which decays exponentially with distance, and only penetrates sample areas that are 100-200 nm near the interface2. In addition to providing superior axial resolution, the reduced excitation of out of focus fluorophores creates a very high signal to noise ratios and minimizes damaging effects of photobleaching2,3. Being a widefield technique, TIRF also allows faster image acquisition than most scanning based confocal setups.

At first glance, the low penetration depth of TIRF seems to be incompatible with imaging of bacterial and fungal cells, which are often surrounded by thick cell walls. On the contrary, we have found that the cell walls of yeast and bacterial cells actually improve the usability of TIRF and increase the range of observable structures4-8. Many cellular processes can therefore be directly accessed by TIRF in small, single-cell microorganisms, which often offer powerful genetic manipulation techniques. This allows us to perform in vivo biochemistry experiments, where kinetics of protein interactions and activities can be directly assessed in living cells.

We describe here the individual steps required to obtain high quality TIRF images for Saccharomyces cerevisiae or Bacillus subtilis cells. We point out various problems that can affect TIRF visualization of fluorescent probes in cells and illustrate the procedure with several application examples. Finally, we demonstrate how TIRF images can be further improved using established image restoration techniques.

Protocol

1. नमूना तैयार करना कवर निकल जाता है की तैयारी Coverslips धूल के कणों से साफ किया जाना चाहिए के रूप में TIRF पृष्ठभूमि coverslip (छवि 1 ए, मूवी 1) से उत्पन्न होने वाले संकेतों के प्रति संवेदनशील है. ढक्…

Discussion

TIRF माइक्रोस्कोपी छवि परिधीय प्रोटीन के लिए पसंद की तकनीक है. क्षणभंगुर क्षेत्र की कम गहराई में प्रवेश ध्यान प्रकाश है, जो शोर अनुपात करने के लिए एक बहुत अच्छा संकेत होता है और उच्च फ्रेम दर, या बहुत दुर्?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

इस काम के मैक्स प्लैंक सोसायटी द्वारा वित्त पोषित किया गया था.

Materials

Name of the tool/reagent Type Company Catalogue number
Orbital Shaker Tool UniEquip UNITWIST 3-D ROCKER SHAKER
TIRF microscope Till   Customized setup
Glass container Tool Vitlab 340-232880353
Ceramic staining rack Tool Thomas Sci. 8542E40
Concanavalin A Reagent Sigma L7647
Coverslips #1(18 x 18 mm) Microscope Menzel Gläser BB018018A1
Microscope Slides Microscope Menzel Gläser AA00000102E
Immersion Oil Microscope Zeiss Immersol 518F
Agarose Reagent Invitrogen 16500-500
FluoSpheres Reagent Invitrogen F8795

References

  1. Axelrod, D., Thompson, N. L., Burghardt, T. P. Total internal inflection fluorescent microscopy. J. Microsc. 129, 19-28 (1983).
  2. Axelrod, D., Omann, G. M. Combinatorial microscopy. Nat. Rev. Mol. Cell Biol. 7, 944-952 (2006).
  3. Axelrod, D. Selective imaging of surface fluorescence with very high aperture microscope objectives. J. Biomed. Opt. 6, 6-13 (2001).
  4. Dominguez-Escobar, J. Processive movement of MreB-associated cell wall biosynthetic complexes in bacteria. Science. 333, 225-228 (2011).
  5. Sparkes, I. A. Bleach it, switch it, bounce it, pull it: using lasers to reveal plant cell dynamics. J. Exp. Bot. 62, 1-7 (2011).
  6. Uchida, M. Total synthesis and absolute configuration of avenolide, extracellular factor in Streptomyces avermitilis. J. Antibiot. (Tokyo). , (2011).
  7. Yu, H., Wedlich-Soldner, R. Cortical actin dynamics: Generating randomness by formin(g) and moving. Bioarchitecture. 1, 165-168 (2011).
  8. Yu, J. H., Crevenna, A. H., Bettenbuhl, M., Freisinger, T., Wedlich-Soldner, R. Cortical actin dynamics driven by formins and myosin V. J. Cell. Sci. 124, 1533-1541 (2011).
  9. Berchtold, D., Walther, T. C. TORC2 plasma membrane localization is essential for cell viability and restricted to a distinct domain. Mol. Biol. Cell. 20, 1565-1575 (2009).
  10. Vizcay-Barrena, G., Webb, S. E., Martin-Fernandez, M. L., Wilson, Z. A. Subcellular and single-molecule imaging of plant fluorescent proteins using total internal reflection fluorescence microscopy (TIRFM). J. Exp. Bot. 62, 5419-5428 (2011).
check_url/3982?article_type=t

Play Video

Cite This Article
Spira, F., Dominguez-Escobar, J., Müller, N., Wedlich-Söldner, R. Visualization of Cortex Organization and Dynamics in Microorganisms, using Total Internal Reflection Fluorescence Microscopy. J. Vis. Exp. (63), e3982, doi:10.3791/3982 (2012).

View Video