Summary

有针对性的特定功能的微域的新皮质相结合的内源信号和双光子成像标记的神经元

Published: December 12, 2012
doi:

Summary

用荧光染料标记细胞在预定的新皮层的功能性微域的一种方法。首先,本征信号光学成像用来获得一个功能图。双光子显微镜被用于标签和图像的神经元内微域的地图。

Abstract

在非啮齿类哺乳动物初级视觉皮层的神经元聚集根据自己的喜好刺激的功能,如方向1-4,5-7方向,眼优势8,9和双眼视差9。方位选择性是最被广泛研究的功能,并具有准周期的布局为择优取向的连续映射在整个初级视觉皮层10,11是本。整合的突触,手机和网络的贡献,在这些功能的地图,以的刺激选择性的反应,需要杂交成像技术,跨越亚微米到毫米的空间尺度。与传统的内源信号光学成像,整体布局功能地图的整个表面上的视觉皮层可确定12。 在体内双光子显微镜使用钙敏感染料的发展使一个确定SYNAPT到达13或记录个人的树突棘IC输入端的活动,同时从数以百计的单个神经元细胞体6,14。因此,结合特性的信号与亚微米的空间分辨率的双光子显微镜成像提供准确地确定树突状段和细胞有助于在新皮质的任何功能的地图的微域的可能性。在这里,我们展示了一个高收益的方法快速获得皮质的方向图,针对一个特定的微域在这个功能的地图,用荧光染料标记细胞在非啮齿类哺乳动物。用于双光子成像具有相同的显微镜中,我们首先生成一个定向地图使用固有的信号的光学成像。然后,我们如何定位的利益,用微装有染料为标签的微域人口的神经元细胞体或标签的单个神经元的树突棘和轴突是可见的体内。我们比以前的方法的改进,促进神经元的结构与功能的关系与亚细胞分辨率的新皮层的功能体系结构的框架中的一个考试。

Protocol

1。手术准备诱导麻醉,并持续监测心跳率,结束潮汐CO 2,脑电图,及温度。南卡罗来纳大学医疗机构动物管理和使用委员会批准了所有的程序,是基于我们以前出版9,15。 公开的背用手术刀切割皮肤表面的头骨。解剖的结缔组织,覆盖骨使用一个Brudon的刮匙。用棉签涂抹和棉花纱布清洁骨。应用骨蜡(如需要)的头骨,偶尔通过小使者静脉的出血停止。 钛?…

Representative Results

为了说明我们的染料标记方法的精度,我们针对最小的微域非啮齿类动物的新皮质中的任何已知的功能图。在初级视觉皮层的方向图是稀疏穿插在整个奇点。这些发生在所有优选方位点收敛等,在优选的方向,周围的区域“风车”( 图2A-B)的奇异性的样子的假彩色地图。每一个风车开颅手术选择染料标记(绿色圆圈在图2C),一定要避免大血管和小动脉,特别是15。<…

Discussion

我们提出一个方法来定位标签在预先确定的功能性微域的新皮层的神经元细胞体(或树突和轴突)。合并内在信号光学成像与双光子显微镜提供的可能性确定哪些突触和细胞有助于微域的任何功能的地图,是否选择性神经元的神经元中的功能图的位置,以及神经元电路相关组件这种变化的视觉体验7或应用临床治疗的药物18。

据报道,在视觉皮层的成年野生型?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作是支持的国家眼科研究所R01EY017925和R21EY020985的资金从达纳白厅基础PK我们也感谢马修·彼得雷拉外科手术的帮助,格雷斯·迪翁示于图5A追踪树突补助; PRATIK Chhatbar为的手稿上的意见。

Materials

Name of Reagent/Material Company Catalogue Number Comments
      1. Life support/experiment prep
Isoflurane Webster Vet NDC 57319-474-05  
Isoflurane vaporizer Midmark VIP 3000  
Feedback regulated heating blanket Harvard Apparatus 50-7079F  
ECG monitor Digicare Biomedical LifeWindow Lite  
EEG amplifier A-M Systems 1800  
EEG display monitor Hewlett Packard 78304A  
End tidal CO2 monitor Respironics Novametrix Capnoguard 1265 Optimize ventilation
Carbide drill burrs for drilling bone Henry Schein fine (0.5 mm tip) and coarse (1.25 mm tip)  
Cement for headplate/chamber Dentsply 675571, 675572  
Black Powder Tempera Paint Sargent Art Inc. 22-7185 Add to cement to improve light shielding and reduce reflections
Agarose – Type III-A Sigma A9793 For minimizing pulsations during intrinsic signal and two-photon imaging
Coverglass: 5 or 8 mm diameter, 0.17 mm thickness World Precision Instruments 502040, 502041 For minimizing pulsations during imaging, the coverglass may be cut as needed
Brudon curettes George Tiemann 105-715-0, 105-715-3 Cleaning skull surface
Bone wax Ethicon W31G Quickly stop bleeding
Cotton Tipped Applicator Electron Microscopy Sciences 72308-05 Clean and dry bone surface
Dumont #5CO Forceps Fine Science Tools 11295-20 Grab individual layers of dura or pia
Vannas Spring Scissors Fine Science Tools 15000-03 Cut dura
Gelfoam Pfizer 09-0396-05 To stop bleeding on the dura
Absorption spears Fine Science Tools 18105-01 Ultra-fast and lint-free wicking of CSF
Blackout material Thorlabs BK5 Shield craniotomy
      2. Dye preparation / injection
Dimethyl Sulphoxide (DMSO) Sigma D2650  
Pluronic Sigma P2443  
Oregon Green 488 Bapta-1 AM Invitrogen O6807 Calcium indicator
Alexa Fluor 594 Invitrogen A10438  
Centrifugal filter (0.45 μm pore size) Millipore UFC30HV00 To remove impurities before injection
Glass pipette puller Sutter Instruments P97  
Borosilicate glass filamented capillary (1.5 mm outer diameter) World Precision Instruments 1B150F-4 Dye ejection pipette
Microloader Eppendorf 5242 956 003 For loading dye into pipette
Micromanipulator Sutter Instruments MP-285 To position pipette
Pressure pulse controller Parker Hannifin PicoSpritzer III For pressure injection of the dye
Single-cell electroporator Molecular Devices Axoporator 800A For electroporation of the dye
      3. Intrinsic imaging
4x Objective (0.13 NA, 17 mm WD) Olympus UPLFLN4X  
Intrinsic hardware / software Optical Imaging Inc. Imager 3001 / VDAQ VDAQ software is used for episodic imaging
CCD Camera Adimec Adimec-1000  
Light source power supply KEPCO ATE 15-15M  
Light source Optical Imaging Inc. HAL 100 Light intensity at the cortical surface is 3-5 mW
Green filter (for vascular image) Optical Imaging Inc. λ = 546 nm (bandpass 30 nm) For reference image of surface vasculature
Red filter (for intrinsic signal) Optical Imaging Inc. λ = 630 nm (bandpass 30 nm) To collect intrinsic signals
Heat filter Optical Imaging Inc. KG-1  
      4. Two-photon rig/imaging
Two-photon microscope and software Prairie Technologies   See Shen et al. 2012 for light path, filters and laser power
Ti:Sapphire laser Spectra-Physics Mai Tai XF  
20x (0.5 NA; 3.5 mm WD) Olympus UMPLFLN20X 0.5 NA objective is used only for aligning pipette over the craniotomy (not for two photon imaging)
20x (1.0 NA; 2.0 mm WD) Olympus XLUMPLFLN20X  
40x (0.8 NA; 3.3 mm WD) Olympus LUMPLFLN40X/IR  
Air table Newport ST-200 Isolates preparation from external vibrations
xy stage Mike’s Machine Co. (Attleboro, MA)   Experimental subject and Sutter micromanipulator placed on xy stage
     
Recipes
Artificial Cerebro-Spinal Fluid NaCl (135 mM), KCl (5.4 mM), MgCl2 (1.0 mM), CaCl2 (1.8 mM), HEPES (5 mM), pH 7.4
Pipette Solution14 NaCl (150 mM), KCl (2.5 mM), HEPES (10 mM), pH 7.4

References

  1. Blasdel, G. G., Salama, G. Voltage-sensitive dyes reveal a modular organization in monkey striate cortex. Nature. 321, 579-585 (1986).
  2. Grinvald, A., Lieke, E., Frostig, R. D., Gilbert, C. D., Wiesel, T. N. Functional architecture of cortex revealed by optical imaging of intrinsic signals. Nature. 324, 361-364 (1986).
  3. Bonhoeffer, T., Grinvald, A. Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns. Nature. 353, 429-431 (1991).
  4. Ohki, K., et al. Highly ordered arrangement of single neurons in orientation pinwheels. Nature. 442, 925-928 (2006).
  5. Shmuel, A., Grinvald, A. Functional organization for direction of motion and its relationship to orientation maps in cat area 18. J. Neurosci. 16, 6945-6964 (1996).
  6. Ohki, K., Chung, S., Ch’ng, Y. H., Kara, P., Reid, R. C. Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex. Nature. 433, 597-603 (2005).
  7. Li, Y., Van Hooser, S. D., Mazurek, M., White, L. E., Fitzpatrick, D. Experience with moving visual stimuli drives the early development of cortical direction selectivity. Nature. 456, 952-956 (2008).
  8. Bonhoeffer, T., Kim, D. S., Malonek, D., Shoham, D., Grinvald, A. Optical imaging of the layout of functional domains in area 17 and across the area 17/18 border in cat visual cortex. Eur. J. Neurosci. 7, 1973-1988 (1995).
  9. Kara, P., Boyd, J. D. A micro-architecture for binocular disparity and ocular dominance in visual cortex. Nature. 458, 627-631 (2009).
  10. da Costa, N. M., Martin, K. A. Whose Cortical Column Would that Be. Frontiers in Neuroanatomy. 4, 16 (2010).
  11. Kaschube, M., et al. Universality in the evolution of orientation columns in the visual cortex. Science. 330, 1113-1116 (2010).
  12. Villeneuve, M. Y., Vanni, M. P., Casanova, C. Modular organization in area 21a of the cat revealed by optical imaging: comparison with the primary visual cortex. Neuroscience. 164, 1320-1333 (2009).
  13. Chen, X., Leischner, U., Rochefort, N. L., Nelken, I., Konnerth, A. Functional mapping of single spines in cortical neurons in vivo. Nature. 475, 501-505 (2011).
  14. Stosiek, C., Garaschuk, O., Holthoff, K., Konnerth, A. In vivo two-photon calcium imaging of neuronal networks. Proc. Natl. Acad. Sci. U.S.A. 100, 7319-7324 (2003).
  15. Shen, Z., Lu, Z., Chhatbar, P. Y., O’Herron, P., Kara, P. An artery-specific fluorescent dye for studying neurovascular coupling. Nat. Methods. 9, 273-276 (2012).
  16. Nevian, T., Helmchen, F. Calcium indicator loading of neurons using single-cell electroporation. Pflugers Archiv. 454, 675-688 (2007).
  17. Kitamura, K., Judkewitz, B., Kano, M., Denk, W., Hausser, M. Targeted patch-clamp recordings and single-cell electroporation of unlabeled neurons in vivo. Nat. Methods. 5, 61-67 (2008).
  18. Pohl-Guimaraes, F., Krahe, T. E., Medina, A. E. Early valproic acid exposure alters functional organization in the primary visual cortex. Exp. Neurol. 228, 138-148 (2011).
  19. Bock, D. D., et al. Network anatomy and in vivo physiology of visual cortical neurons. Nature. 471, 177-182 (2011).
  20. Rochefort, N. L., et al. Development of direction selectivity in mouse cortical neurons. Neuron. 71, 425-432 (2011).
  21. Mrsic-Flogel, T. D., et al. Homeostatic regulation of eye-specific responses in visual cortex during ocular dominance plasticity. Neuron. 54, 961-972 (2007).
  22. Bonhoeffer, T., Grinvald, A., Toga, A. W., Mazziotta, J. C. Optical Imaging Based on Intrinsic Signals. Brain mapping: The Methods. , 55-97 (1996).
  23. Kerr, J. N., Greenberg, D., Helmchen, F. Imaging input and output of neocortical networks in vivo. Proc. Natl. Acad. Sci. U.S.A. 102, 14063-14068 (2005).
  24. Hofer, S. B., et al. Differential connectivity and response dynamics of excitatory and inhibitory neurons in visual cortex. Nat. Neurosci. 14, 1045-1052 (2011).
check_url/50025?article_type=t

Play Video

Cite This Article
O’Herron, P., Shen, Z., Lu, Z., Schramm, A. E., Levy, M., Kara, P. Targeted Labeling of Neurons in a Specific Functional Micro-domain of the Neocortex by Combining Intrinsic Signal and Two-photon Imaging. J. Vis. Exp. (70), e50025, doi:10.3791/50025 (2012).

View Video