Summary

原代大鼠乳鼠心肌细胞的活细胞成像继腺病毒和慢病毒转导利用共聚焦旋转盘显微镜

Published: June 24, 2014
doi:

Summary

This protocol describes a method of live cell imaging using primary rat neonatal cardiomyocytes following lentiviral and adenoviral transduction using confocal spinning disk microscopy. This enables detailed observations of cellular processes in living cardiomyocytes.

Abstract

原代大鼠新生心肌细胞是有用的基本体外心血管研究,因为它们可以很容易地分离出大量的单一步骤。由于在显微镜技术的进步是相对容易捕捉到活细胞的图像进行调查的实时有关的光毒性的细胞的细胞事件以最小的关注的目的。本协议描述了如何利用共聚焦旋转盘显微镜下慢病毒和腺病毒转导调节细胞的特性采取原代大鼠乳鼠心肌细胞的活细胞慢速拍摄的图像。两种不同类型的病毒的应用可以更容易地实现合适的转导率和表达水平的两个不同的基因。以及聚焦活细胞图像可以使用显微镜的自动对焦系统,可以保持稳定的聚焦长的时间段来获得。应用这种方法,外源性工程师的功能表达在培养的原代细胞编蛋白进行分析。此外,该系统可用于通过化学式调制器的使用的siRNA以及检查基因的功能。

Introduction

原代大鼠新生心肌早已被用于体外 1调查心肌功能。他们很容易从幼鼠由几个公认的方法2-4隔离开来。最常见的方法使用胶原酶或胰蛋白酶消化之前,细胞分离心脏的结缔组织。研究人员还开发了从成年啮齿动物5-8以及新生小鼠9,10分离心肌细胞的方法。

这个协议描述了从新生大鼠幼仔分离心肌细胞,采用两步酶消化过程的方法。胰蛋白酶是第一次使用O / N在4℃,然后纯化胶原酶在37°C心脏组织用胰蛋白酶O / N的潜伏期在4℃可减少相比,使用顺序孵化在一个温暖的酶液2种方法需要收获细胞的步骤。此外,通过使用纯化的共llagenase而不是粗酶液,批与批之间的变化可以被消除,从而提供增强的可重复性。

特定蛋白质的功能性研究经常采用利用腺病毒11-13和/或14-16的慢病毒的蛋白质表达系统。 [忠告]病毒的生产和操作应根据美国国立卫生研究院的指引进行。

腺病毒不整合到宿主基因组中。它具有转导在大多数细胞类型,包括分裂细胞和非分裂细胞,以及原代细胞和建立的细胞系中非常高的效率。这使得腺病毒的可靠载体用于基因表达。高水平的腺病毒载体编码的蛋白的48小时内下列传导开发,并且它们可以持续数周17。然而,一个缺点是使用的腺病毒蛋白质的表达是一种重组腺的发展novirus是既复杂又费时。这个缺点在部分解释了为什么许多研究人员已经转向慢病毒重组基因的表达。与腺病毒的构建,产生慢病毒结构非常简单快捷。虽然慢病毒通常具有转导的低效率比腺病毒,在两个分裂和非分裂细胞,它们整合到宿主基因组中。因此,转基因的表达对于慢病毒比为腺病毒更稳定。

由于在显微镜领域的技术进步,这是很容易捕捉到细胞中表达重组蛋白的活细胞的图像。这甚至在收购视频速率的速度也是如此。这使得研究者确定如何具体改变在感兴趣的蛋白质在功能上影响实时细胞。共聚焦旋转盘显微镜有,使它成为LIV最佳技术的几个关键特性Ë细胞成像18,19。横河电机旋转的光盘允许更快速图像获取,而在同一时间利用少得多的激光功率比点扫描共聚焦显微镜。这两个特殊的特性是由于旋转的盘,其中包含通过该激光同时传递到许多样品的共焦孔。在采集过程中,磁盘本身旋转快速,持续18-20。通过使用显微镜的自动对焦系统,稳定的焦点被维持在很长一段时间。这使研究人员能够采取有重点的活细胞图像。采集的图像回放的电影文件。图像是使用图像分析软件,如ImageJ的21,22,斐济23,或其它市售软件进行分析。

Protocol

1,隔离乳鼠心肌细胞用Dulbecco改进的Eagle培养基(DMEM)和补充有胎牛血清(FBS)和青霉素/链霉素(P / S)作为培养基的最低必需培养基(MEM)。添加溴脱氧尿苷(BrdU)标记为介质,以防止成纤维细胞生长为隔离后的第2天。 基础培养基 FBS 的BrdU(MM) P / S(U / ml的) 选择 DMEM 10?…

Representative Results

为了说明的技术中,慢病毒编码EGFP(增强型绿色荧光蛋白)标记的Cx43(连接蛋白43)或突变的Cx43蛋白32,来表达EGFP-标记的蛋白质在细胞和腺病毒编码FGFR1DN(成纤维细胞生长因子受体1显性失活)被用来关闭FGF信号在细胞33-35。三天之后的心肌细胞的分离,该分离的心肌细胞转导的慢病毒,以表达EGFP-标记的蛋白质在细胞内。然后后的慢病毒转导后3天,分离的心肌细胞进一步转导?…

Discussion

从新生大鼠原代心肌早就被用来研究心肌细胞功能的体外 。这个协议描述了用于从幼鼠采用两步酶消化法新生心肌细胞的分离方法,首先用胰蛋白酶O / N消化,在4℃,然后纯化的胶原酶。采用纯化的胶原酶步骤的一个优点在于,同一等级的酶被用于所有隔离。因此,分离的细胞的质量和数量是从实验的实验一致。

给定与腺病毒相关的,如果细胞培养转导的高效率是必?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

We would like to thank Dr. Alengo Nyamay’antu and Dr. Ilse Timmerman for their advices about lentiviral packaging. This work is supported by an American Heart Association Scientist Development Grant 10SDG4170137.

Materials

1 scissors for decapitation WPI 501749 Autoclave before use
1 fine scissors for heart isolation and chopping WPI 14393 Autoclave before use
2 fine forceps (Dumont No. 5) Sigma F6521 Autoclave before use
Three sterilized 10 cm plastic dishes Sigma CLS430165 for hearts isolation
3.5 cm glass bottom culture dishes MatTek P35G-1.5-20-C for final plating of cardiomyocytes for future live cell imaging. micro-Dishes from ibidi are an acceptable alternative.
3.5 cm glass bottom culture dishes MatTek P35G-0.17-14-C for TIRF or high resolution image
Ethanol solution, 70 % (v/v) in water Sigma E7148
2% gelatin Sigma G1393
One sterilized 10 cm plastic dish Sigma CLS430165 for trypsinization
Aluminium foil any brand
parafilm Sigma P7543
Two 10 cm plastic cell culture dish Sigma CLS430165 for selection
Auto pipette Drummond Scientific  4-000-300 for trituration
Cell counter
  Cellometer, automated cell counter nexcelom to check and count cells
  Microscope and Hematocytometer any brand to check and count cells
Trypan Blue Solution, 0.4% invitrogen 15250-061
CO2 incubator Sanyo MCO-19AIC
incubating orbital shaker Sigma Z673129 to shake heart tissue with collagenase at 37 C at 170-200 rpm
10 mg/ml BrdU solution BD Pharmingen 550891
DMEM, High Glucose invitrogen 41965039 Mix medium as indicated in the protocol and warm before use
MEM invitrogen 31095029 Mix medium as indicated in the protocol and warm before use
Fetal Bovine Serum invitrogen 26140079
Penicillin-Streptomycin (10,000 U/mL)  invitrogen 15140-122
Section 2 lentiviral transduction
three packaging plasmids
 pMDLg/pRRE Addgene 12251
 pRSV-Rev Addgene 12253
 pMD2.G Addgene 12259
The lentiviral transfer vector, pLVX-IRES-Puro Clontech 632183
Opti-MEM (serum-free medium) invitrogen 31985070
transfection reagent
  polyethyleneimine“Max”, (Mw 40,000) – High Potency Linear PEI (Equivalent to Mw 25,000 in Free Base Form)  Polysciences 24765-2 It can be substituted with X-tremeGENE 9 from Roche
  X-tremeGENE 9 Roche 6365779001 substitute for PEI as transfection reagent
chloroquine Sigma C6628 dissolve in water and make 100 mM stock solution. Inhibition of endosomal acidification can be achieved with 10-100 μM Chloroquine.
HEPES Sigma H3375
10 ml Luer-Lok syringe, sterilized BD 309604
0.45 um filters Sigma F8677 use only cellulose acetate or polyethersulfone (PES) (low protein binding) filters. Do not use nitrocellulose filters. Nitrocellulose binds surface proteins on the lentiviral envelope and destroys the virus.
Hexadimethrine bromide Sigma H9268 dissolve in water and make 8mg/ml stock solution, then filter it to sterilize.
polyethylene glicol 6000 Sigma 81260
Sodium chloride Sigma S9888
sodium hydroxide Sigma S5881
Section 3 Adenoviral transduction
HEK 293T cells ATCC CRL-11268
Some 10 cm cell culture dishes Sigma CLS430165
96-Well Microplate with lid, flat-bottom, tissue culture, sterile BD Falcon 353072 for titration
Multichannel piptte, 10-100 ul, 8-channel eppendorf 3122 000.035
Section 4 live cell imaging
Spinning disk confocal microspopy PerkinElmer L7267000
a temperature controlled chamber any brand to keep temperature at 37 C
a CO2 environmental system any brand optional to maintain CO2 concentration optimal
Medium
  CO2 Independent Medium, No Glutamine invitrogen 18045-054   for long time time-lapse imaging
  DMEM, High Glucose, HEPES, no Phenol Red  invitrogen 21063-029 for long time time-lapse imaging

References

  1. Gross, W. O., Schopf-Ebner, E., Bucher, O. M. Technique for the preparation of homogeneous cultures of isolated heart muscle cells. Experimental cell research. 53, 1-10 (1968).
  2. Toraason, M., Luken, M. E., Breitenstein, M., Krueger, J. A., Biagini, R. E. Comparative toxicity of allylamine and acrolein in cultured myocytes and fibroblasts from neonatal rat heart. Toxicology. 56, 107-117 (1989).
  3. MacGregor, R. R., Klein, R. M., Bansal, D. D. Secretion of plasminogen activator activity from neonatal rat heart cells is regulated by hormones and growth factors. Annals of the New York Academy of Sciences. 752, 331-342 (1995).
  4. Louch, W. E., Sheehan, K. A., Wolska, B. M. Methods in cardiomyocyte isolation, culture, and gene transfer. Journal of molecular and cellular cardiology. 51, 288-298 (2011).
  5. Wolska, B. M., Solaro, R. J. Method for isolation of adult mouse cardiac myocytes for studies of contraction and microfluorimetry. The American journal of physiology. , 271-1250 (1996).
  6. Kaestner, L., et al. Isolation and genetic manipulation of adult cardiac myocytes for confocal imaging. J Vis Exp. 31 (31), (2009).
  7. Xu, X., Colecraft, H. M. Primary culture of adult rat heart myocytes. J Vis Exp. 28 (28), (2009).
  8. Pinz, I., Zhu, M., Mende, U., Ingwall, J. S. An improved isolation procedure for adult mouse cardiomyocytes. Cell biochemistry and biophysics. 61, 93-101 (2011).
  9. Sreejit, P., Kumar, S., Verma, R. S. An improved protocol for primary culture of cardiomyocyte from neonatal mice. In vitro cellular & developmental biology. Animal. 44, 45-50 (2008).
  10. Ehler, E., Moore-Morris, T., Lange, S. Isolation and Culture of Neonatal Mouse Cardiomyocytes. J Vis Exp. 79 (79), (2013).
  11. Kass-Eisler, A., et al. Quantitative determination of adenovirus-mediated gene delivery to rat cardiac myocytes in vitro and in vivo. Proceedings of the National Academy of Sciences of the United States of America. 90, 11498-11502 (1993).
  12. Wasala, N. B., Shin, J. H., Duan, D. The evolution of heart gene delivery vectors. The journal of gene medicine. 13, 557-565 (2011).
  13. Metzger, J. M. . Cardiac Cell and Gene Transfer: Principles, Protocols, and Applications. , (2003).
  14. Naldini, L., et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science. 272, 263-267 (1996).
  15. Zhao, J., et al. Lentiviral vectors for delivery of genes into neonatal and adult ventricular cardiac myocytes in vitro and in vivo. Basic research in cardiology. 97, 348-358 (2002).
  16. Bonci, D., et al. Advanced’ generation lentiviruses as efficient vectors for cardiomyocyte gene transduction in vitro and in vivo. Gene therapy. 10, 630-636 (2003).
  17. Murakami, M., et al. The FGF system has a key role in regulating vascular integrity. The Journal of clinical investigation. 118, 3355-3366 (2008).
  18. Nakano, A. Spinning-disk confocal microscopy — a cutting-edge tool for imaging of membrane traffic. Cell structure and function. 27, 349-355 (2002).
  19. Adams, M. C., et al. A high-speed multispectral spinning-disk confocal microscope system for fluorescent speckle microscopy of living cells. Methods (San Diego, Calif. 29, 29-41 (2003).
  20. Wilson, T. Spinning-disk microscopy systems. Cold Spring Harbor protocols). 2010, pdb top88, doi:10.1101/pdb.top88. , (2010).
  21. Collins, T. J. ImageJ for microscopy. BioTechniques. 43, 25-30 (2007).
  22. Schneider, C. A., Rasband, W. S., Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nature. 9, 671-675 (2012).
  23. Schindelin, J., et al. Fiji: an open-source platform for biological-image analysis. Nature. 9, 676-682 (2012).
  24. Wang, X., McManus, M. Lentivirus production. J Vis Exp. 32 (32), (2009).
  25. Li, M., Husic, N., Lin, Y., Snider, B. J. Production of lentiviral vectors for transducing cells from the central nervous system. J Vis Exp. 63 (63), 10-3791 (2012).
  26. Mendenhall, A., Lesnik, J., Mukherjee, C., Antes, T., Sengupta, R. Packaging HIV- or FIV-based lentivector expression constructs and transduction of VSV-G pseudotyped viral particles. J Vis Exp. 62 (62), 10-3791 (2012).
  27. Durocher, Y., Perret, S., Kamen, A. High-level and high-throughput recombinant protein production by transient transfection of suspension-growing human 293-EBNA1 cells. Nucleic acids research. 30, (2002).
  28. Erbacher, P., Roche, A. C., Monsigny, M., Midoux, P. Putative role of chloroquine in gene transfer into a human hepatoma cell line by DNA/lactosylated polylysine complexes. Experimental cell research. 225, 186-194 (1996).
  29. McSharry, J., Benzinger, R. Concentration and purification of vesicular stomatitis virus by polyethylene glycol ‘precipitation’. Virology. 40, 745-746 (1970).
  30. Wulff, N. H., Tzatzaris, M., Young, P. J. Monte Carlo simulation of the Spearman-Kaerber TCID50. Journal of clinical. 2, 10-1186 (2012).
  31. Kaerber, G. . Beitrag zur kollektiven Behandlung pharmakologischer Reihenversuche. In: Beitrag zur kollektiven Behandlung pharmakologischer Reihenversuche. 162. , (1931).
  32. Sakurai, T., Tsuchida, M., Lampe, P. D., Murakami, M. Cardiomyocyte FGF signaling is required for Cx43 phosphorylation and cardiac gap junction maintenance. Experimental cell research. 319, 2152-2165 (2013).
  33. Ueno, H., Gunn, M., Dell, K., Tseng, A., Williams, L. A truncated form of fibroblast growth factor receptor 1 inhibits signal transduction by multiple types of fibroblast growth factor receptor. The Journal of biological chemistry. , 267-1470 (1992).
  34. Li, Y., Basilico, C., Mansukhani, A. Cell transformation by fibroblast growth factors can be suppressed by truncated fibroblast growth factor receptors. Molecular and cellular biology. 14, 7660-7669 (1994).
  35. Murakami, M., et al. FGF-dependent regulation of VEGF receptor 2 expression in mice. The Journal of clinical investigation. 121, 2668-2678 (2011).
  36. Bazan, C., et al. Contractility assessment in enzymatically isolated cardiomyocytes. Biophysical reviews. , 231-2310 (2012).
  37. Clark, W. A., Rudnick, S. J., Simpson, D. G., LaPres, J. J., Decker, R. S. Cultured adult cardiac myocytes maintain protein synthetic capacity of intact adult hearts. The American journal of physiology. , 264-573 (1993).
check_url/51666?article_type=t

Play Video

Cite This Article
Sakurai, T., Lanahan, A., Woolls, M. J., Li, N., Tirziu, D., Murakami, M. Live Cell Imaging of Primary Rat Neonatal Cardiomyocytes Following Adenoviral and Lentiviral Transduction Using Confocal Spinning Disk Microscopy. J. Vis. Exp. (88), e51666, doi:10.3791/51666 (2014).

View Video