Summary

A Síntese, Caracterização e Reatividade de uma série de Rutênio<em> N</em> -triphos<sup> Ph</sup> Complexos

Published: April 10, 2015
doi:

Summary

Complexos de rutênio de fosfina são amplamente utilizados para reações catalíticas homogêneas, como hidrogenação. A síntese de uma série de novos complexos de ruténio tridentado que ostentam o ligando -triphos N N (CH 2 PPh 2) 3 é relatado. Além disso, a reacção estequiométrica de um complexo dihydride Ru- N -triphos com ácido levulínico é descrito.

Abstract

Aqui relatamos a síntese de um ligando tridentado fosfina N (CH 2 PPh 2) 3 (N -triphos Ph) (1) através de uma reacção de Mannich com base de fósforo do precursor hidroxilmetileno fosfina com amónia em metanol, sob uma atmosfera de azoto. A N -triphos Ph ligando precipita a partir da solução após cerca de 1 hora de refluxo e pode ser isolado analiticamente puro através do procedimento de filtração simples cânula sob azoto. A reacção do N -triphos ligando Ph com [Ru 3 (CO) 12], sob refluxo, proporciona uma solução vermelho escuro que mostram evolução de gás de CO em complexação ligando. Cristais cor de laranja do complexo [Ru (CO) 2 {N (CH 2 PPh 2) 3}3 P] (2) foram isolados por arrefecimento até à temperatura ambiente. A 31 P {1 H} espectro de RMN mostrou um pico única característica com menor frequênciaem comparação com o ligando livre. A reacção de uma solução de tolueno do complexo 2 com oxigénio resultou na precipitação instantânea do carbonato de complexo [Ru (CO 3) (CO) {N (CH 2 PPh 2) 3}3 P] (3) como um estável ar sólido cor de laranja. A subsequente hidrogenação de 3 sob 15 bar de hidrogénio num reactor de alta pressão deu o complexo dihydride [RuH 2 (CO) {N (CH 2 PPh 2) 3}3 P] (4), a qual foi totalmente caracterizado por X cristalografia de raios- e espectroscopia de RMN. Complexos de 3 e 4 são potencialmente precursores de catalisadores úteis para uma série de reações de hidrogenação, incluindo produtos derivados da biomassa, como o ácido levulínico (LA). Complexo 4 foi encontrado para reagir de forma limpa com LA na presença do aditivo fonte de protões NH 4 PF 6 para se obter a [Ru (CO) {N (CH 2 PPh 2) 3} 3 P -κ {CH 3 CO (CH 2) 2 CO 2 H} -κ 2O] (PF 6) (6).

Introduction

Complexos de ruténio com base de fosfina são alguns dos catalisadores moleculares mais amplamente estudados e quimicamente versáteis. 1-9 Tipicamente, tais catalisadores de ruténio conter tanto ligandos mono- ou bi-dentadas que ditam a electrónica, sterics, geometria e a solubilidade do complexo, e que impactar profundamente na atividade catalítica. Sistemas de fosfina multidentados foram menos estudados para a catálise, como são conhecidos para conferir maior estabilidade no centro do metal devido ao maior efeito quelato de múltiplos doadores de fósforo no centro de metal. Tal estabilização pode ser indesejável para a catálise, no entanto, sob condições mais severas de reacção (temperaturas e pressões mais elevadas), as propriedades de estabilização de tais ligandos complexos pode ser vantajoso para assegurar a integridade do catalisador. Um tal sistema de ligando fosfina multidentado que 10-12 e 13-18 foram investigadas outras para conferir estabilidade do complexo e coor facialgeometrias coor- é o chamado série ligando N -triphos onde três braços de fosfina estão ligados a um átomo de azoto em ponte apical formando um ligando tridentado potencialmente. Uma das características chave para estes ligandos específicos é o caminho simplista de que eles podem ser sintetizados por meio de uma reacção de Mannich com base de fósforo a partir de fosfinas secundárias prontamente disponíveis (Figura 1), portanto, fosfinas com uma variedade de grupos R pode ser preparado geralmente em rendimentos elevados e com o mínimo de trabalho-up. O objetivo geral desta metodologia é o de apresentar uma rota fácil pelo qual rutênio complexos dihydride caracterizam ligantes N -triphos pode ser acessado por aplicações catalíticas subsequentes. Recentemente, os complexos à base de Ru-triphos têm atraído a atenção como catalisadores para as reacções de hidrogenação de produtos derivados da biomassa, tais como ácido levulínico, 19,20 bio-ésteres de 11,21 e 22 dióxido de carbono para os produtos químicos de alto valor. Seria vantajosopara expandir o escopo de derivados Ru-triphos que ou são tão ou mais ativo do que os sistemas já relatados, especialmente se eles são sinteticamente mais fácil acesso, tais como a N -triphos ligando. O análogo centrado no carbono mais estudado é tipicamente afectada de baixo rendimento e envolve a síntese de reagentes de fosforeto de metal altamente sensíveis ao ar, ao contrário do N -triphos ligando, que é mais flexível e mais fácil de preparar. 10-18

Ligantes N -triphos permanecem relativamente pouco investigado, com apenas molibdênio, tungstênio, rutênio, ródio e ouro complexos tendo sido relatada a partir de nove publicações. Isso está em contraste gritante com os análogos de boro e centrados em carbono, para o qual não estão em torno de 50 e 900 artigos, respectivamente, com um grande número de compostos únicos. Aplicação No entanto, -triphos N contendo complexos de ter encontrado na hidrogenação catalítica assimétrica de olefinas pró-quirais 23 como nósll cyclohydroamination como assimétrica de N-protegido sulfonamidas γ-alenil. 24 Adicionalmente, um complexo de ruténio coordenado por um ligando volumoso N -triphos caracteriza phospholane coordenação porções foi encontrado para activar silanos, um passo chave no desenvolvimento de organo-silício química. 25

Como parte do programa de investigação em curso em catálise, buscou-se preparar uma série de rutênio N -triphos precatalysts Ph e investigar suas reações estequiométricas e potencial catalítico. Apesar de complexos de molibdênio de N -triphos Ph tendo sido relatada pela primeira vez mais de 25 anos atrás, a sua aplicação, ou de outra forma catalítica não foi investigado. Este trabalho demonstra a aplicabilidade da N -triphos andaime, que apesar de ser em geral, subdesenvolvida, possuem muitas características desejáveis, tais como a estabilidade do complexo. Neste artigo descrevemos uma via de síntese e caracterização de auma série de complexos de ruténio N -triphos pH que podem encontrar aplicação em reacções de hidrogenação catalítica.

Protocol

Nota: Executar todas as sínteses em um exaustor, e só depois de as questões de segurança apropriadas foram identificados e as medidas tomadas para proteger contra eles. Equipamento de proteção individual incluem um jaleco, luvas e óculos de segurança e deve ser usado em todos os momentos. 1. Síntese de N, N, N-tris (diphenylphosphinomethylene) amina, N (CH 2 PPh 2) 3 (N -triphos Ph) (1) Para um de 200 ml, seco em estufa balão de Schlenk adic…

Representative Results

A N -triphos Ph ligando (1) e da série de complexo de ruténio: Ru (CO) 2 {N (CH 2 PPh 2) 3} -κ 3 P] (2), [Ru (CO 3) (CO) N { (CH 2 PPh 2) 3} -κ 3 P] (3) e [Ru (H) 2 (CO) {N (CH 2 PPh 2) 3} -κ 3 P] (4) foram caracterizados através de um H, 13 C {…

Discussion

Aqui descrevemos processos de síntese eficiente para a síntese de um ligando tridentado fosfina e uma série de complexos de ruténio. A N -triphos ligando Ph (1) pode ser facilmente preparado, com elevado rendimento com um procedimento de processamento minimalista. Esta reacção de Mannich com base de fósforo usada para sintetizar estes tipos de ligandos é muito geral e pode ser utilizado para outros derivados de ligandos com diferentes grupos R nos átomos de P. 10-12,15-…

Disclosures

The authors have nothing to disclose.

Acknowledgements

AP is grateful to Imperial College London for a PhD studentship via the Frankland Chair endowment. Johnson Matthey plc are also thanked for the loan of the precious metal salts used in this work.

Materials

Methanol Obtained from in-house solvent purification system: Innovative Technology, inc "pure solv" drying tower. Stored in ampules over activated molecular sieves under nitrogen.
Toluene
Diethyl Ether
Tetrahydrofuran (THF)
Acetonitrile
d6-Acetone VWR VWRC87152.0011 Store in fridge
Triethylamine Sigma-Aldrich TO886-1L Distilled and stored over activated molecular sieves under N2
2M Ammonia solution in methanol Sigma-Aldrich 341428-100ML Solution comes in a "Sure-Seal" bottle
NH4PF6 Sigma-Aldrich 216593-5G Store in desiccator
Levulinic Acid Acros Organics 125142500 Solid but melts close to room temperature
3 Å Molecular sieves Alfa Aesar LO5359 Activate by heating over night under vacuum
Schlenk flasks GPE Custom design
Dual-manifold Schlenk line GPE Custom design Dual-manifold of i) N2 that has been passed through a silica drying column and ii) vacuum.
Rotary vacuum pump Edwards RV3 A652-01-903
100 ml Autoclave Engineer's high pressure reactor Autoclave Engineer Custon design
Vortex Stirrer VWR 444-1378

References

  1. Bruneau, C., Dixneuf, P. H. . Ruthenium Catalysis and Fine Chemicals. , (2004).
  2. Naota, T., Takaya, H., Murahashi, S. -. L. Ruthenium-Catalyzed Reactions for Organic Synthesis. Chem. Rev. 98 (7), 2599-2660 (1998).
  3. Arockaim, P. B., Bruneau, C., Dixneuf, P. H. Ruthenium(II)-Catalyzed C-H Bond Activation and Functionalization. Chem. Rev. 112 (11), 5879-5918 (2012).
  4. Trost, B. M., Toste, F. D., Pinkerton, A. B. Non-metathesis ruthenium-catalyzed C-C bond formation. Chem. Rev. 101 (7), 2067-2096 (2001).
  5. Vougioukalakis, G. C., Grubbs, R. H. Ruthenium-Based Heterocyclic Carbene-Coordinated Olefin Metathesis Catalysis. Chem. Rev. 110 (3), 1746-1787 (2010).
  6. Lozano-Vila, A. M., Monsaert, S., Bajek, A., Verpoort, F. Ruthenium-based olefin metathesis catalysts derived from alkynes. Chem. Rev. 110 (8), 4865-4909 (2010).
  7. Samojlowicz, C., Bieniek, M., Grela, K. Ruthenium-based olefin metathesis catalysts bearing N-heterocyclic carbene ligands. Chem. Rev. 109 (8), 3708-3742 (2009).
  8. Alcaide, B., Almedros, P., Luna, A. G. r. u. b. b. s. &. #. 8. 2. 1. 7. ;. Ruthenium-Carbenes Beyond the Metathesis Reaction: Less Conventional Non-Metathetic Utility. Chem. Rev. 109 (8), 3817-3858 (2009).
  9. Conley, B. L., Pennington-Boggio, M. K., Boz, E., Discovery Williams, T. J. Applications, and Catalytic Mechanisms of Shvo’s Catalyst. Chem. Rev. 110 (4), 2294-2312 (2010).
  10. Miller, P. W., White, A. J. P. The preparation of multimetallic complexes using sterically bulky N-centered tipodal dialkyl phosphine ligands. J. Organomet. Chem. 695 (8), 1138-1145 (2010).
  11. Hanton, M. J., Tin, S., Boardman, B. J., Miller, P. Ruthenium-catalysed hydrogenation of esters using tripodal phosphine ligands. J. Mol. Catal. A. 346 (1-2), 70-78 (2012).
  12. Phanopoulos, A., Brown, N. J., White, A. J. P., Long, N. J., Miller, P. W. Synthesis, Characterization, and Reactivity of Ruthenium Hydride Complexes of N-Centered Triphosphine Ligands. Inorg. Chem. 53 (7), 3742-3752 (2014).
  13. Jin, G. Y. N.N.N-tris(phosphinomethylen)amine N.N.N’-tris(phosphinomethylene)hydrazine N.N.N’.N’-tetra(phosphinomethylene)hydrazine. Tetrahedron Lett. 22 (12), 1105-1108 (1981).
  14. Walter, O., Huttner, G., Kern, R. Preparation and Characterisation of N(CH2PPh2)3. N(CH2PPh2)3Mo(CO)3 and [HN(CH2PPh2)3Mo(CO)3]BF4. Z. Naturforsch. 51b, 922-928 (1996).
  15. Fillol, J. L., Kruckenberg, A., Scherl, P., Wadepohl, H., Gade, L. H. Stitching Phospholanes Together Piece by Piece: New Modular Di- and Tridentate Stereodirecting Ligands. Chem. Eur. J. 17 (50), 14047-14062 (2011).
  16. Rodríguez, L. -. I., Roth, T., Fillol, J. L., Wadepohl, H., Gade, L. H. The More Gold–The More Enantioselective: Cyclohydroaminations of γ-Allenyl Sulfonamides with Mono Bis, and Trisphospholane Gold(I) Catalysts. Chem. Eur. J. 18 (12), 3721-3728 (2012).
  17. Scherl, P., Kruckenberg, A., Mader, S., Wadepohl, H., Gade, L. H. Ruthenium η4-Trimethylenemethane Complexes Containing Tripodal Phosphanomethylamine Ligands. Organometallics. 31 (19), 7024-7027 (2012).
  18. Scherl, P., Wadepohl, H., Gade, L. H. Hydrogenation and Silylation of a Double-Cyclometalated Ruthenium Complex: Structures and Dynamic Behavior of Hydrido and Hydridosilicate Ruthenium Complexes. Organometallics. 32 (15), 4409-4415 (2013).
  19. Geilen, F. M. A. Selective and Flexible Transformation of Biomass-Derived Platform Chemicals by a Multifunctional Catalytic System. Angew. Chem. Int. Ed. 49 (32), 5510-5514 (2010).
  20. Geilen, F. M. A., Engendahl, B., Hölscher, M., Klankermayer, J., Leitner, W. Selective Homogeneous Hydrogenation of Biogenic Carboxylic Acids with [Ru(TriPhos)H]+: A Mechanistic Study. J. Am. Chem. Soc. 133 (36), 14349-14358 (2011).
  21. Van Engelen, M. C., Teunissen, H. T., de Vries, J. G., Elsevier, C. J. Suitable ligands for homogeneous ruthenium-catalyzed hydrogenolysis of esters. J. Mol. Catal. A. 206 (1-2), 185-192 (2003).
  22. Wesselbaum, S., vom Stein, T., Klankermayer, J., Leitner, W. Hydrogenation of Carbon Dioxide to Methanol by Using a Homogeneous Ruthenium–Phosphine Catalyst. Angew. Chem. Int. Ed. 51 (30), 7499-7502 (2012).
  23. Fillol, J. L., Kruckenberg, A., Scherl, P., Wadepohl, H., Gade, L. H. Stitching Phospholanes Together Piece by Piece: New Modular Di- and Tridentate Stereodirecting Ligands. Chem. Eur. J. 17 (50), 14047-14062 (2011).
  24. Rodríguez, L. -. I., Roth, T., Fillol, J. L., Wadepohl, H., Gade, L. H. The More Gold–The More Enantioselective: Cyclohydroaminations of γ-Allenyl Sulfonamides with Mono Bis-, and Trisphospholane Gold(I) Catalysts. Chem. Eur. J. 18 (12), 3721-3728 (2012).
  25. Scherl, P., Wadepohl, H., Gade, L. H. Hydrogenation and Silylation of a Double-Cyclometalated Ruthenium Complex: Structures and Dynamic Behavior of Hydrido and Hydridosilicate Ruthenium Complexes. Organometallics. 32 (15), 4409-4415 (2013).
  26. Bennett, B. K., Richmond, T. G. An Inexpensive, Disposable Cannula Filtration Device. J. Chem. Educ. 75 (8), 1034 (1998).
  27. Judd, C. S. Proton NMR Basics. J. Chem. Educ. 72 (8), 706 (1995).
  28. Rhodes, L. F., Venanzi, L. M. Ruthenium(II)-Assisted Borohydride Reduction of Acetonitrile. Inorg. Chem. 26 (16), 2692-2695 (1987).
  29. Bakhmutov, V. I. In-depth NMR and IR study of the proton transfer equilibrium between [{MeC(CH2PPh2)3}Ru(CO)H2] and hexafluoroisopropanol. Can. J. Chem. 79, 479-489 (2001).
check_url/52689?article_type=t

Play Video

Cite This Article
Phanopoulos, A., Long, N., Miller, P. The Synthesis, Characterization and Reactivity of a Series of Ruthenium N-triphosPh Complexes. J. Vis. Exp. (98), e52689, doi:10.3791/52689 (2015).

View Video