Summary

化学气相沉积的有机磁体,钒四氰

Published: July 03, 2015
doi:

Summary

我们提出的基于有机物的亚铁磁钒四氰的合成(Ⅴ[TCNE],则x〜2)通过低温化学气相沉积(CVD)。这种优化配方产生增加居里温度从400 K至600 K和磁共振性能的显着改善。

Abstract

在有机材料领域中的最新进展已经产生了器件如有机发光二极管(OLED),其具有传统的材料,包括低成本和机械柔韧性没有发现的优点。与此类似,这将是有利的,以扩大利用有机物成高频电子器件和基于自旋的电子器件。这项工作提出的合成方法,薄膜的室温有机亚铁磁的生长,钒四氰(Ⅴ[TCNE],则x〜2)通过低温化学气相沉积(CVD)。薄膜生长在<60℃下,可容纳各种基材,包括但不限于,硅,玻璃,聚四氟乙烯和柔性基板。的保形沉积,有利于预图案化和三维结构为好。另外,该技术可以得到具有厚度范围从30纳米到几微米的薄膜。最新进展在膜生长的优化产生的膜的品质,如更高的居里温度(600 K),改进的磁性均匀性和窄铁磁谐振线路宽度为各种在自旋电子学和微波电子应用(1.5 g)示出的承诺。

Introduction

有机基铁氧体磁性半导体钒四氰(Ⅴ[TCNE],则x〜2)表现出室温磁有序和承诺的磁电子应用,如柔软性,低成本的生产,和化学可调谐性的有机材料的优点。以前的研究已经证明,在自旋电子器件,包括杂化有机/无机1,2-和全有机自旋阀3的功能,和作为活性有机/无机半导体异质结构4自旋偏振器。此外,V [TCNE]×〜2展示了承诺列入高频电子产品,由于其极窄的铁磁共振行距5。

有已建立的合成V [TCNE]×〜2月 6日至九日四种不同的方法。 V [TCNE]×〜2首次合成powde经由TCNE和V的反应中的R二氯甲烷(C 6 H 6)6。这些粉末表现出在有机系材料中观察到的第一个室温磁有序。然而,这种材料的粉末形式是极其空气敏感,限制了其在薄膜器件的应用。在2000年,化学气相沉积(CVD)方法建立用于创建V [TCNE]×〜2薄膜7。更多最近的物理气相沉积(PVD)8和分子层沉积(MLD)9也已用于制造薄膜。 PVD法需要超高真空(UHV)系统和两者PVD和MLD方法需要极长的时间来生长膜厚度大于100纳米,而在CVD膜可以很容易地在厚度范围从30纳米到几微米沉积。除了各种可用与CVD法厚度,广泛的研究已经取得了优化的薄膜即一直显示高Quality磁特性包括:窄铁磁共振(FMR)线宽(1.5克),高的居里温度(600 K)和尖锐的磁开关5。

以V [TCNE]×〜2薄膜磁有序通过非常规途径进行。 SQUID磁力测量显示强大的本地磁有序但由于没有X射线衍射峰和特征的透射型电子显微镜(TEM)10形态揭示缺乏长程结构秩序。然而,扩展X射线吸收精细结构(EXAFS)研究11表明每个钒离子八面体配位与六个不同TCNE分子,表明与2.084(5)埃的钒-氮键长度的稳定的局部结构秩序。磁性源于TCNE的未配对自旋之间的反铁磁性交换耦合基阴离子,它们分布在整个TCNE 分子,并且在V 2+离子的自旋,导致本地铁磁有序与T C 〜600 K中优化膜5。除了 ​​表现出室温磁有序,V [TCNE]×〜2薄膜半导体为0.5 EV带隙12。值得注意的其他性能包括低于〜150开13,14,反常正磁阻12,15,16,和光诱导磁13,17,18的冷冻温度可能sperimagnetism。

CVD法合成V [TCNE]×〜2薄膜与各种基质的相容因低温(<60℃)和保形沉积。以前的研究显示了V [TCNE]×〜2成功沉积在刚性和柔性基板7。此外,该沉积技术适合于调谐通过前体和改性克owth参数19-22虽然此处所示的协议产生最优化的膜迄今为止,显著进展已取得,因为这种方法的发现改善的一些膜的性质和进一步的增益是可能的。

Protocol

1.合成和前体的制备 [的Et 4 N]的制备[V(CO)6] 23 在氮气手套箱中,切1.88克金属钠到〜40片,并与14.84克蒽的1升三颈圆底烧瓶中混合320毫升无水四氢呋喃(THF)。 注意:这两种金属钠和四​​氢呋喃是高度易燃的。 在RT搅拌在氮气氛下的溶液4.5小时,直到NAC 14 H 10被形成深蓝色溶液。 冷却该溶液至0℃。 在氮气手套箱?…

Representative Results

第一和最容易的方法,用于确定一个沉积是成功的是做膜的目视检查。这部电影应该会出现暗紫色采用了镜面设计是整个基板均匀。如果在衬底的表面上的斑点,其中有否v [TCNE]×〜2,或者它是在颜色较浅,则这可能是由于溶剂或其它杂质的衬底表面上的存在。此外,该电影应该是不透明的。除非薄膜沉积在只有几分钟的短时间内,半透明膜往往意味着有可能已被与前体的沉积期间…

Discussion

关键参数中V [TCNE]×〜2沉积包括温度,载气流量,压力,和前体的比例。因为化学气相沉积设置不是市售这些参数将需要为每一个系统进行优化。先前的研究由麻等人透露,温度对TCNE前体26的升华速率的影响最大。温度可通过在温度控制器和还通过调整在加热线圈和作为这样的丝间距将需要校准每个系统中设置的值进行修改两者。温度的校准是通过测量反应器内之前?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作是由美国国家科学基金会批准号DMR-1207243,美国国家科学基金会MRSEC程序支持(DMR-0820414),美国能源部批准号:DE-FG02-03ER46054,以及俄勒冈州立大学,金属材料研究所。作者承认了纳米技术实验室在俄亥俄州立大学,以及CY花王和CY陈技术援助。

Materials

Equipment
Nitrogen Glovebox Vacuum Atmospheres Omni steps done in nitrogen glovebox can also be done in an argon glovebox
1 L three-neck round bottom flask Corning 4965A-1L
500 mL round bottom flask Sigma Aldrich 64678
Turbo vacuum pumping station Agilent Varian G8701A-011-037
Glass Stopcock Kontes 185000-2440
Glass two way connecting tube Corning 8940-24 Corning Pyrex(R) 105 degree Angled Tube Adapter with Two-Way 24/40 Standard Taper Joint
Coldfinger Custom part made by OSU chemistry glass shop
Argon Glovebox Vacuum Atmospheres Nexus I
Hot plate stirrer Corning 6795
Thermoeletric cooler Advanced Thermoelectric TCP-50
Temperature controller Advanced Thermoelectric TLZ10 for TE cooler
Power supply Advanced Thermoelectric PS-145W-12V  for TE cooler and temperature controller
Temperature controller J-Kem  Scientific Model 150 For heating coil
Heating wire Pelican Wire Company Nichrome 60
Custom glassware pieces Made by OSU Chemistry glass shop
Vacuum pump BOC Edwards XDS-5 Connected to the CVD set-up
Flow meter Gilmont GF-2260
Micrometer valve Gilmont 7300 Controls flow of argon over TCNE
Micrometer valve Gilmont 7100 Controls flow of argon over  V(CO)6
Tubing Tygon R3603 1/8 in walls, connected between valves and meter
3-way Stopcock Nalgene 6470 used to adjust the flow rates
Pressure gauge Matheson 63-4105 connects to the top of Figure 1 part A
SQUID magnetometer Quantum Design MPMS-XL
EPR Bruker Elexsys
PPMS Quantum Design 14T PPMS
Sourcemeter Keithely  2400
Materials
Sodium metal Sigma Aldrich 262714
Anthracene Sigma Aldrich 141062
Anhydrous tetrahydrofuran Sigma Aldrich 186562
Vanadium(III) chloride tetrahydrofuran complex Sigma Aldrich 395382
Carbon monoxide gas OSU stores 98610
Tetraethylammonium bromide Sigma Aldrich 241059
Phosphoric acid Sigma Aldrich 79622
Methanol Sigma Aldrich 14262
Silcone oil Sigma Aldrich 146153
Copper pellets Cut from spare copper wire
Tetracyanoethylene Sigma Aldrich T8809
Glass slides Gold Seal 3010
Activated Charcoal Sigma Aldrich 242276

References

  1. Yoo, J. W., et al. Spin injection/detection using an organic-based magnetic semiconductor. Nat. Mater. 9, 638-642 (2010).
  2. Li, B., et al. Room-temperature organic-based spin polarizer. Appl. Phys. Lett. 99, 153503 (2011).
  3. Li, B., Kao, C. Y., Yoo, J. W., Prigodin, V. N., Epstein, A. J. Magnetoresistance in an All-Organic-Based Spin Valve. Adv. Mater. 23, 3382-3386 (2011).
  4. Fang, L., et al. Electrical Spin Injection from an Organic-Based Ferrimagnet in a Hybrid Organic-Inorganic Heterostructure. Phys. Rev. Lett. 106, 156602 (2011).
  5. Yu, H., et al. Ultra-narrow ferromagnetic resonance in organic-based thin films grown via low temperature chemical vapor deposition. Appl. Phys. Lett. 105, 012407 (2014).
  6. Manriquez, J. M., Yee, G. T., McLean, R. S., Epstein, A. J., Miller, J. S. A Room-Temperature Molecular Organic Based Magnet. Science. 252, 1415-1417 (1991).
  7. Pokhodnya, K. I., Epstein, A. J., Miller, J. S. . Thin-film V TCNE (x) magnets. Adv. Mater. 12, 410-413 (2000).
  8. Carlegrim, E., Kanciurzewska, A., Nordblad, P., Fahlman, M. Air-stable organic-based semiconducting room temperature thin film magnet for spintronics applications. Appl. Phys. Lett. 92, 163308 (2008).
  9. Kao, C. Y., Yoo, J. W., Min, Y., Epstein, A. J. Molecular Layer Deposition of an Organic-Based Magnetic Semiconducting Laminate. ACS Appl. Mater. Interfaces. 4, 137-141 (2012).
  10. Miller, J. S. Oliver Kahn Lecture: Composition and structure of the V TCNE (x) (TCNE = tetracyanoethylene) room-temperature, organic-based magnet – A personal perspective. Polyhedron. 28, 1596-1605 (2009).
  11. Haskel, D., et al. Local structural order in the disordered vanadium tetracyanoethylene room-temperature molecule-based magnet. Phys. Rev. B. 70, 054422 (2004).
  12. Prigodin, V. N., Raju, N. P., Pokhodnya, K. I., Miller, J. S., Epstein, A. J. Spin-Driven Resistance in Organic-Based Magnetic Semiconductor V[TCNE]x. Adv. Mater. 14, 1230-1233 (2002).
  13. Yoo, J. W., Edelstein, R. S., Lincoln, D. M., Raju, N. P., Epstein, A. J. Photoinduced magnetism and random magnetic anisotropy in organic-based magnetic semiconductor V(TCNE)(x) films, for x similar to 2. Phys. Rev. Lett. 99 (15), 157205 (2007).
  14. Cimpoesu, F., Frecus, B., Oprea, C. I., Panait, P., Gîrţu, M. A. Disorder, exchange and magnetic anisotropy in the room-temperature molecular magnet V[TCNE]x – A theoretical study. Computational Materials Science. 91, 320-328 (2014).
  15. Raju, N. P., Prigodin, V. N., Pokhodnya, K. I., Miller, J. S., Epstein, A. J. High field linear magnetoresistance in fully spin-polarized high-temperature organic-based ferrimagnetic semiconductor V(TCNE)(x) films, x similar to 2. Synth. Met. 160, 307-310 (2010).
  16. Raju, N. P., et al. Anomalous magnetoresistance in high-temperature organic-based magnetic semiconducting V(TCNE)(x) films. J. Appl. Phys. 93, 6799-6801 (2003).
  17. Yoo, J. W., et al. Multiple photonic responses in films of organic-based magnetic semiconductor V(TCNE)(x), x similar to 2. Phys. Rev. Lett. 97, 247205 (2006).
  18. Yoo, J. W., Edelstein, R. S., Raju, N. P., Lincoln, D. M., Epstein, A. J. Novel mechanism of photoinduced magnetism in organic-based magnetic semiconductor V(TCNE)(x), x similar to 2. J. Appl. Phys. 103, 07B912 (2008).
  19. Caro, D., et al. CVD-grown thin films of molecule-based magnets. Chem. Mat. 12, 587-589 (2000).
  20. Erickson, P. K., Miller, J. S. Thin film Co TCNE (2) and VyCo1-y TCNE (2) magnetic materials. J. Magn. Magn. Mater. 324 (2), 2218-2223 (2012).
  21. Valade, L., et al. Thin films of molecular materials grown on silicon substrates by chemical vapor deposition and electrodeposition. J. Low Temp. Phys. 142, 393-396 (2006).
  22. Casellas, H., de Caro, D., Valade, L., Cassoux, P. A new chromium-based molecular magnet grown as a thin film by CVD. Chem. Vapor Depos. 8, 145-147 (2002).
  23. Barybin, M. V., Pomije, M. K., Ellis, J. E. Highly reduced organometallics – 42. A new method for the syntheses of V(CO)(6) (-) and V(PF3)(6) (-) involving anthracenide mediated reductions of VCl3(THF)(3). Inorg. Chim. Acta. 269, 58-62 (1998).
  24. Froning, I. H. M., Lu, Y., Epstein, A. J., Johnston-Halperin, E. Thin-film Encapsulation of the Air-Sensitive Organic Ferrimagnet Vanadium Tetracyanoethylene. Appl. Phys. Lett. 106, 122403 (2015).
  25. Pokhodnya, K. I., Bonner, M., Miller, J. S. Parylene protection coatings for thin film V TCNE (x) room temperature magnets. Chem. Mat. 16, 5114-5119 (2004).
  26. Shima Edelstein, R., Yoo, J. -. W., Raju, N. P., Bergeson, J. D., Pokhodnya, K. I., Miller, J. S., Epstein, A. J., Tessler, N., Arias, A. C., Burgi, L., Emerson, J. A. . Materials Research Society. , (2005).
  27. Katz, H. E. Recent advances in semiconductor performance and printing processes for organic transistor-based electronics). Chem. Mat. 16, 4748-4756 (2004).
  28. Subbarao, S. P., Bahlke, M. E., Kymissis, I. Laboratory Thin-Film Encapsulation of Air-Sensitive Organic Semiconductor Devices. IEEE Trans. Electron Devices. 57, 153-156 (2010).
  29. Lungenschmied, C., et al. Flexible, long-lived, large-area, organic solar cells. Solar Energy Materials and Solar Cells. 91, 379-384 (2007).
  30. Lu, Y., et al. Thin-Film Deposition of an Organic Magnet Based on Vanadium Methyl Tricyanoethylenecarboxylate. Adv. Mater. 26, 7632-7636 (2014).
check_url/52891?article_type=t

Play Video

Cite This Article
Harberts, M., Lu, Y., Yu, H., Epstein, A. J., Johnston-Halperin, E. Chemical Vapor Deposition of an Organic Magnet, Vanadium Tetracyanoethylene. J. Vis. Exp. (101), e52891, doi:10.3791/52891 (2015).

View Video