Summary

采用Caco-2细胞研究脂质运输由肠

Published: August 20, 2015
doi:

Summary

Caco-2 cells can serve as an in vitro model to study the enterocyte transport of lipids, and lipid-soluble drugs/vitamins. The permeable membrane system separates the apical from the basolateral compartment, while the lentivirus expression system offers an effective gene overexpression method. The isolation of lipoproteins is confirmed by TEM.

Abstract

Studies of dietary fat absorption are generally conducted by using an animal model equipped with a lymph cannula. Although this animal model is widely accepted as the in vivo model of dietary fat absorption, the surgical techniques involved are challenging and expensive. Genetic manipulation of the animal model is also costly and time consuming. The alternative in vitro model is arguably more affordable, timesaving, and less challenging. Importantly, the in vitro model allows investigators to examine the enterocytes as an isolated system, reducing the complexity inherent in the whole organism model. This paper describes how human colon carcinoma cells (Caco-2) can serve as an in vitro model to study the enterocyte transport of lipids, and lipid-soluble drugs and vitamins. It explains the proper maintenance of Caco-2 cells and the preparation of their lipid mixture; and it further discusses the valuable option of using the permeable membrane system. Since differentiated Caco-2 cells are polarized, the main advantage of using the permeable membrane system is that it separates the apical from the basolateral compartment. Consequently, the lipid mixture can be added to the apical compartment while the lipoproteins can be collected from the basolateral compartment. In addition, the effectiveness of the lentivirus expression system in upregulating gene expression in Caco-2 cells is discussed. Lastly, this paper describes how to confirm the successful isolation of intestinal lipoproteins by transmission electron microscopy (TEM).

Introduction

4 –的饮食脂肪,和脂溶性药物和维生素肠吸收的研究可以在体内通过使用淋巴瘘模型1进行。然而,所涉及的手术技术不仅具有挑战性的,而且成本很高。虽然体内方法的基础上的粪便分析可以利用,它们被用于主要由胃肠道2,5,以确定百分摄取。本文所述的体外模型更符合成本效益,以及所涉及的技术,可以说是不太具有挑战性。基因修饰的研究也更经济和耗时更少时,他们利用这种体外模型进行的。

因为这是采取由肠细胞的脂溶性物质被打包成脂蛋白6,7,体外模型的有效性,以产生脂蛋白是至关重要的。两个主要intestina升脂蛋白是乳糜微粒和极低密​​度脂蛋白(VLDL)。乳糜微粒,其定义为具有80nm以上脂蛋白直径,严格生产由小肠时的脂质是大量存在于胃肠内腔。因为它们是最大的脂蛋白,乳糜微粒是可以想象的最有效的脂质转运。此体外模型,其能够产生乳糜微粒8,可用于研究饮食脂肪吸收,脂溶性维生素的吸收由肠道和口服脂溶性药物的生物利用度。脂溶性分子,维生素,或药物中的脂蛋白组分的存在是其吸收由小肠的指标。如先前讨论的,该模型可以用于改善口腔脂溶性药物的生物利用度6。

本文介绍Caco-2细胞如何应保持在渗透膜或定期组织培养皿,如何脂质英里夹具用于刺激脂蛋白生产应准备,如何慢病毒表达系统可以被用来实现有效的过表达,而分离出的脂蛋白应如​​何进行分析。

Protocol

在Caco-2细胞的1.维持使用常规组织培养皿解冻的Caco-2细胞从冷冻的小瓶通过将小瓶在37℃水浴中,并立即将其添加到含有10预温热的生长培养基(15%胎牛血清毫升10cm的组织培养皿(FBS )在Dulbecco氏改良Eagle培养基(DMEM))。 当Caco-2细胞达到50-70%汇合时,将它们分割1:直到它们被分离的6通过在37℃下孵育细胞用3ml的0.05%胰蛋白酶/ 0.53毫乙二胺四乙酸(EDTA)(15分钟) 。为了?…

Representative Results

图1显示正常的13天后汇合Caco-2细胞。圆顶形结构和细胞内脂滴的外观是分化的Caco-2细胞的特征。当Caco-2细胞不播种期间同样地分散,他们会结块并长满在盘的特定区域;而且会有少数地区的菜没有任何细胞。涡流,并放置在盘上的倾斜面,应该避免。同样重要的是要注意,后汇合Caco-2细胞更易受到当新生长培养基加入到细胞中过于粗略地脱离。因此,新的媒体,应缓慢加入,以防止细…

Discussion

在本文中,可以使用两个系统,以保持Caco-2细胞进行了描述,即,常规的组织培养皿和渗透膜。利用渗透膜系统的优点包括心尖的和分离基底外侧室,并孵育​​所述脂质混合物并同时收集所述脂蛋白的分泌的能力。然而,渗透膜刀片是昂贵的,并且它们的聚碳酸酯膜不允许良好的细胞可见性。一个这种体外模型的一个优点是,遗传操作的研究将是更经济的和耗时少。为了获得更好的效果?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was supported by the Seed Grant Award from California Northstate University College of Pharmacy (to AMN). The authors would like to thank California Northstate University College of Pharmacy for covering the publication cost of this article, and George Talbott for his help in editing this manuscript.

Materials

DMEM VWR 16750-112 Pre-warm the growth media in individual tissue culture dish before adding cells
FBS Fisher 3600511 We do not heat inactivate our serum
Trypsin VWR 45000-660 Cells can be washed with PBS prior to trypsin treatment 
Permeable membrane system Fisher 7200173 10-cm dish, 3-mm pore size, polycarbonate membrane
10 cm dish Fisher 08-772-E Tissue culture dish
15 cm dish Fisher 08-772-24 Tissue culture dish
24 well plate Fisher 12565163 Tissue culture plate
Lipid-based transfection reagent Fisher PRE2691 Can be substituted with other transfection reagent
Reduced serum media Invitrogen 11058021 For transfection
pLL3.7 eGFP Addgene 11795 https://www.addgene.org/11795/
Bottle-top filter Fisher 9761120 0.45 mm pore
Polybrene Fisher NC9840454 10 mg/mL
Oleic acid Sigma 01383-5G Prevent freeze-thaw cycle
Lecithin  Fisher IC10214625 Egg lecithin 
Sodium taurocholate Fisher NC9620276 Product discontinued; alternative catalog number: 50-121-7956
Protease inhibitor cocktail tablet (EDTA-free) Fisher 5892791001 Used mainly for samples that need TEM analysis
Polycarbonate ultracentrifuge tube Fisher NC9696153 Reusing it multiple times will collapse the tube
Lid for ultracentrifuge tube Fisher NC9796914 A tool is required to remove the tube/lid from rotor
Syringe Fisher 50-949-261 Disposable
Syringe filter Fisher 09-719C Pore size = 0.2 mm; nylon
Phosphotungstic acid Fisher AC208310250 For preparing 2% phosphotungstic acid, pH 6.0
Tweezer Fisher 50-238-62 Extra fine and strong tips
Formvar/carbon grid Fisher 50-260-34 Formvar/carbon film square grid 400 Copper

References

  1. Drover, V. A., et al. CD36 deficiency impairs intestinal lipid secretion and clearance of chylomicrons from the blood. J Clin Invest. 115 (5), 1290-1297 (2005).
  2. Nauli, A. M., et al. CD36 is important for chylomicron formation and secretion and may mediate cholesterol uptake in the proximal intestine. Gastroenterology. 131 (4), 1197-1207 (2006).
  3. Nauli, A. M., Zheng, S., Yang, Q., Li, R., Jandacek, R., Tso, P. Intestinal alkaline phosphatase release is not associated with chylomicron formation. Am J Physiol Gastrointest Liver Physiol. 284 (4), G583-G587 (2003).
  4. Lo, C. -. M., et al. Why does the gut choose apolipoprotein B48 but not B100 for chylomicron formation. Am J Physiol Gastrointest Liver Physiol. 294 (1), G344-G352 (2008).
  5. Jandacek, R. J., Heubi, J. E., Tso, P. A novel, noninvasive method for the measurement of intestinal fat absorption. Gastroenterology. 127 (1), 139-144 (2004).
  6. Nauli, A. M., Nauli, S. M. Intestinal transport as a potential determinant of drug bioavailability. Curr Clin Pharmacol. 8 (3), 247-255 (2013).
  7. Tso, P., Nauli, A., Lo, C. M. Enterocyte fatty acid uptake and intestinal fatty acid-binding protein. Biochem Soc Trans. 32 (Pt 1), 75-78 (2004).
  8. Nauli, A. M., Sun, Y., Whittimore, J. D., Atyia, S., Krishnaswamy, G., Nauli, S. M. Chylomicrons produced by Caco-2 cells contained ApoB-48 with diameter of 80-200 nm. Physiol Rep. 2 (6), (2014).
  9. Rubinson, D. A., et al. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat Genet. 33 (3), 401-406 (2003).
  10. Li, M., Husic, N., Lin, Y., Snider, B. J. Production of lentiviral vectors for transducing cells from the central nervous system. J Vis Exp. (63), e4031 (2012).
  11. Pottekat, A., et al. Insulin biosynthetic interaction network component, TMEM24, facilitates insulin reserve pool release. Cell Rep. 4 (5), 921-930 (2013).
  12. Van Greevenbroek, M. M., van Meer, G., Erkelens, D. W. Effects of saturated, mono-, and polyunsaturated fatty acids on the secretion of apo B containing lipoproteins by Caco-2 cells. Atherosclerosis. 21 (1), 139-150 (1996).
  13. Levy, E., Yotov, W., Seidman, E. G., Garofalo, C., Delvin, E., Ménard, D. Caco-2 cells and human fetal colon: a comparative analysis of their lipid transport. Biochim Biophys Acta. 1439 (3), 353-362 (1999).
  14. Luchoomun, J., Hussain, M. M. Assembly and secretion of chylomicrons by differentiated Caco-2 cells. Nascent triglycerides and preformed phospholipids are preferentially used for lipoprotein assembly. J Biol Chem. 274 (28), 19565-19572 (1999).
check_url/53086?article_type=t

Play Video

Cite This Article
Nauli, A. M., Whittimore, J. D. Using Caco-2 Cells to Study Lipid Transport by the Intestine. J. Vis. Exp. (102), e53086, doi:10.3791/53086 (2015).

View Video