Summary

在型号蓝藻种类标记和无标记突变体的产生

Published: May 29, 2016
doi:

Summary

Introducing multiple genomic alterations into cyanobacteria is an essential tool in the development of strains for industrial and basic research purposes. We describe a system for generating unmarked mutants in the model cyanobacterial species Synechocystis sp. PCC6803 and marked mutants in Synechococcus sp. PCC7002.

Abstract

Cyanobacteria are ecologically important organisms and potential platforms for production of biofuels and useful industrial products. Genetic manipulation of cyanobacteria, especially model organisms such as Synechocystis sp. PCC6803 and Synechococcus sp. PCC7002, is a key tool for both basic and applied research. Generation of unmarked mutants, whereby chromosomal alterations are introduced into a strain via insertion of an antibiotic resistance cassette (a manipulatable fragment of DNA containing one or more genes), followed by subsequent removal of this cassette using a negative selectable marker, is a particularly powerful technique. Unmarked mutants can be repeatedly genetically manipulated, allowing as many alterations to be introduced into a strain as desired. In addition, the absence of genes encoding antibiotic resistance proteins in the mutated strain is desirable, as it avoids the possibility of ‘escape’ of antibiotic resistant organisms into the environment. However, detailed methods for repeated rounds of genetic manipulation of cyanobacteria are not well described in the scientific literature. Here we provide a comprehensive description of this technique, which we have successfully used to generate mutants with multiple deletions, single point mutations within a gene of interest and insertion of novel gene cassettes.

Introduction

蓝藻是地球上几乎每一个自然环境中的细菌的进化古老而多样化的门。在海洋生态系统中,他们都特别丰富,许多营养循环中发挥关键作用,约占一半的固碳1,在海洋中的大多数固氮2和数百万吨的油气产量3每年。叶绿体,细胞器负责在真核藻类和植物的光合作用,很可能已经从由宿主生物体4吞噬蓝藻演变。蓝藻已经证明是有用的模式生物进行光合作用,电子传递5和生化途径,其中许多植物中是保守的研究。此外蓝藻越来越多地被用于生产食品,生物燃料6,电力7和工业化合物8,由于它们的喜的水和CO 2 ghly有效转化生物质使用太阳能9。许多物种可以在非耕地用最少的营养物和海水中培养,这表明蓝藻可能在大规模生长,而不会影响农业生产。某些物种也是天然产品,包括抗真菌剂,抗菌剂和抗癌化合物10,11的源。

产生突变的能力是关键了解蓝藻光合作用,生物化学和生理学,以及必不可少的菌株用于工业用途的发展。大多数已发表的研究中产生遗传上通过抗生素抗性盒的插入修饰的菌株到感兴趣的部位。这限制了可被引入到菌株,因为只有少数的抗生素抗性盒可用于在蓝藻使用突变的数量。含有基因的菌株抗生素赋予重sistance不能用于工业生产中的开放的池塘,这很可能是唯一的成本效益的方法,以产生生物燃料和其它低价值产品12。未标记突变体的产生克服了这些限制。未标记的突变体不包含外源DNA的,除非有意包括在内,并且可以操作多次。因此,可以根据需要在一个菌株,以产生尽可能多的改变。此外,在变形例的网站的下游基因极性影响可以最小化,从而使机体13的更精确的修饰。

为了产生突变体菌株,自杀质粒在蓝藻染色体含有两个DNA片段相同的区域侧翼的基因被删除(称为5'和3'侧翼区)的第一构造。然后两个基因这些侧翼区域之间插入。其中的一个编码抗生素抗性蛋白;第二编码将SacB,这督促集体企业果聚糖蔗糖酶的化合物,赋予蔗糖敏感性。在此过程中的第一阶段中,标记的突变体,含有一些外源DNA 菌株产生。该质粒构建体与蓝藻细胞混合和该DNA是由生物体吸收自然。转化体是由生长在含有适当的抗生素和通过PCR验证了突变体基因型琼脂平板上选择。自杀质粒不能感兴趣的菌株中复制。因此,任何抗生素抗性菌落,将导致从由此感兴趣的基因中插入染色体中的重组事件。以产生未标记突变体中,明显的突变,然后用仅包含5'和3'侧翼区的第二自杀质粒混合。然而,如果需要的外源DNA的插入,由5'和3'侧翼用含有这些DNA片段之间插入目的基因的盒的区域的质粒,可以使用。塞莱ction是,通过含有蔗糖琼脂平板上生长。作为当sacB基因产物被表达蔗糖是致死的细胞,该存在的唯一的细胞是其中已经发生了第二次重组事件,由此,蔗糖敏感性基因,除了在抗生素抗性基因,已被重组出的染色体上的质粒。作为重组交换的结果,侧翼区和它们之间的任何DNA被插入到染色体。

我们已经成功地使用这些方法来产生在集胞藻的同一菌株的多个染色体突变。 6803(以下简称为集胞藻属 )13,14,引入单点突变到感兴趣13的基因和用于基因盒的表达。而代无标记击倒之前已经提供了工作在集胞藻 15,16,详细的方法证实,由辅助的关键步骤的视觉呈现,是不公开的。我们还以另一种模式蓝藻, 聚球藻申请代明显击倒同样的方法。 PCC7002(以下简称为聚球藻 )。该协议提供了产生突变体和用于验证和存储这些菌株快速协议的清晰,简单的方法。

Protocol

1.培养基的制备根据Castenholz,1988年17准备BG11培养基。 准备100X BG11的储备液,微量元素铁的股票( 表1)。 制备磷酸盐股票的单独的溶液, 的 Na 2 CO 3的库存,N – [三(羟甲基)甲基] -2-氨基乙磺酸(TES)缓冲液和碳酸氢钠 ( 表1)。 高压灭菌的磷酸盐和Na 2 CO 3的股票。过滤消毒TES…

Representative Results

质粒设计是成功产生两个标记和未标记的突变体是至关重要的。 图1给出了质粒A的一个例子和B用于产生在集胞藻属基因cpcC1和cpcC2 13的缺失突变体。在每种情况下,5'和3'侧翼区是约900-1,000碱基对。可用于降低侧翼区虽然我们已经试验成功最小的已经约500基点。质粒B也可以可以包含5'和3'〜1kb的侧翼区或天然基因序列的修…

Discussion

在无人盯防的产生突变体的最重要的步骤是:1)精心设计载体,以确保只有目标区域被改变; 2)确保样品保持无菌,尤其是当上培养的蔗糖; 3)电镀转化最初在缺乏抗生素,随后加入琼脂加抗生素24小时后的BG11琼脂平板上标注的突变体产生的细胞; 4)培养标志着前4整天突变体上镀BG11加蔗糖琼脂平板:5)确保标记突变体是完全隔离和6)确认彻底突变株的基因型。对于这最后的步骤中,设计用于?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们感谢环境服务协会教育信托基金,在剑桥SynBio基金合成生物学和社会正义和赋权,印度政府部,给予资金支持。

Materials

NaNO3 Sigma S5506
MgSO4.7H2O Sigma 230391
CaCl2 Sigma C1016
citric acid Sigma C0759
Na2EDTA Fisher EDT002
H3BO3 Sigma 339067
MnCl2.4H2O Sigma M3634
ZnSO4.7H2O Sigma Z4750
Na2MoO4.2H2O Sigma 331058
CuSO4.5H2O Sigma 209198
Co(NO3)2.6H2O Sigma 239267
Ferric ammonium citrate Sigma F5879
K2HPO4 Sigma P3786
Na2CO3 Fisher SODC001
TES Sigma T1375
NaHCO3 Fisher SODH001
HEPES Sigma H3375
cyanocobalamin Sigma 47869
Na2S2O3 Sigma 72049
Bacto agar BD 214010
Sucrose Fisher SUC001
Petri dish 90 mm triple vented Greiner 633185
0.2 µm filters Sartorius 16534
100 mL conical flasks Pyrex CON004
Parafilm M 100 mm x38 m Bemis FIL003
Phusion high fidelity DNA polymerase  Phusion F-530
Agarose Melford MB1200
DNA purification kit  MoBio 12100-300
Restriction endonucleases NEB
T4 ligase Thermo Scientific EL0011
Luria Bertani broth Invitrogen 12795-027
MES Sigma M8250
Kanamycin sulfate Sigma 60615
Ampicillin Sigma A9518
GeneJET plasmid miniprep kit Thermo Scientific K0503
14 mL round-bottom tube BD falcon 352059
GoTaq G2 Flexi DNA polymerase Promega M7805
425-600 µm glass beads Sigma G8772
Glycerol Sigma G5516
DMSO Sigma D8418
Fluorescent bulbs Gro-Lux 69
HT multitron photobioreactor Infors

References

  1. Zwirglmaier, K., et al. Global phylogeography of marine Synechococcus and Prochlorococcus reveals a distinct partitioning of lineages among oceanic biomes. Environ Microbiol. 10, 147-161 (2008).
  2. Galloway, J. N., et al. Nitrogen cycles: past, present, and future. Biogeochemistry. 70, 153-226 (2004).
  3. Lea-Smith, D. J., et al. Contribution of cyanobacterial alkane production to the ocean hydrocarbon cycle. Proc Natl Acad Sci U S A. , (2015).
  4. Howe, C. J., Barbrook, A. C., Nisbet, R. E. R., Lockhart, P. J., Larkum, A. W. D. The origin of plastids. Philos Trans R Soc Lond B Biol Sci. 363, 2675-2685 (2008).
  5. Lea-Smith, D. J., Bombelli, P., Vasudevan, R., Howe, C. J. Photosynthetic, respiratory and extracellular electron transport pathways in cyanobacteria. Biochim Biophys Acta. , (2015).
  6. McCormick, A. J., et al. Hydrogen production through oxygenic photosynthesis using the cyanobacterium Synechocystis sp PCC 6803 in a bio-photoelectrolysis cell (BPE) system. Energy Environ. Sci. 6, 2682-2690 (2013).
  7. Bradley, R. W., Bombelli, P., Lea-Smith, D. J., Howe, C. J. Terminal oxidase mutants of the cyanobacterium Synechocystis sp. PCC 6803 show increased electrogenic activity in biological photo-voltaic systems. Phys Chem Chem Phys. 15, 13611-13618 (2013).
  8. Ducat, D. C., Way, J. C., Silver, P. A. Engineering cyanobacteria to generate high-value products. Trends Biotechnol. 29, 95-103 (2011).
  9. Dismukes, G. C., Carrieri, D., Bennette, N., Ananyev, G. M., Posewitz, M. C. Aquatic phototrophs: efficient alternatives to land-based crops for biofuels. Curr Opin Biotechnol. 19, 235-240 (2008).
  10. Tan, L. T. Bioactive natural products from marine cyanobacteria for drug discovery. Phytochemistry. 68, 954-979 (2007).
  11. Volk, R. B., Furkert, F. H. Antialgal, antibacterial and antifungal activity of two metabolites produced and excreted by cyanobacteria during growth. Microbiol Res. 161, 180-186 (2006).
  12. Scott, S. A., et al. Biodiesel from algae: challenges and prospects. Curr Opin Biotechnol. 21, 277-286 (2010).
  13. Lea-Smith, D. J., et al. Phycobilisome-deficient strains of Synechocystis sp. PCC 6803 have reduced size and require carbon-limiting conditions to exhibit enhanced productivity. Plant Physiol. 165, 705-714 (2014).
  14. Lea-Smith, D. J., et al. Thylakoid terminal oxidases are essential for the cyanobacterium Synechocystis sp. PCC 6803 to survive rapidly changing light intensities. Plant Physiol. 162, 484-495 (2013).
  15. Liu, X., Sheng, J., Curtiss, R. Fatty acid production in genetically modified cyanobacteria. Proc Natl Acad Sci U S A. 108, 6899-6904 (2011).
  16. Xu, H., Vavilin, D., Funk, C., Vermaas, W. Multiple deletions of small cab-like proteins in the cyanobacterium Synechocystis sp PCC 6803 – Consequences for pigment biosynthesis and accumulation. J Biol Chem. 279, 27971-27979 (2004).
  17. Castenholz, R. W. Culturing methods for Cyanobacteria. Method Enzymol. 167, 68-93 (1988).
  18. Mitschke, J., et al. An experimentally anchored map of transcriptional start sites in the model cyanobacterium Synechocystis sp PCC6803. Proc Natl Acad Sci U S A. 108, 2124-2129 (2011).
  19. Ried, J. L., Collmer, A. An nptI-sacB-sacR cartridge for constructing directed, unmarked mutations in gram-negative bacteria by marker exchange-eviction mutagenesis. Gene. 57, 239-246 (1987).
  20. Vieira, J., Messing, J. The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene. 19, 259-268 (1982).
  21. Vermaas, W. F. J., Williams, J. G. K., Rutherford, A. W., Mathis, P., Arntzen, C. J. Genetically Engineered Mutant of the Cyanobacterium Synechocystis 6803 Lacks the Photosystem-Ii Chlorophyll-Binding Protein Cp-47. Proc Natl Acad Sci U S A. 83, 9474-9477 (1986).
  22. Westphal, S., Heins, L., Soll, J., Vothknecht, U. C. Vipp1 deletion mutant of Synechocystis: A connection between bacterial phage shock and thylakoid biogenesis?. Proc Natl Acad Sci U S A. 98, 4243-4248 (2001).
  23. Zhang, S. Y., Shen, G. Z., Li, Z. K., Golbeck, J. H., Bryant, D. A. Vipp1 Is Essential for the Biogenesis of Photosystem I but Not Thylakoid Membranes in Synechococcus sp PCC 7002. J Biol Chem. 289, 15904-15914 (2014).
  24. Taroncher-Oldenberg, G., Nishina, K., Stephanopoulos, G. Identification and analysis of the polyhydroxyalkanoate-specific beta-ketothiolase and acetoacetyl coenzyme A reductase genes in the cyanobacterium Synechocystis sp strain PCC6803. Appl Environ Microbiol. 66, 4440-4448 (2000).
  25. Hein, S., Tran, H., Steinbuchel, A. Synechocystis sp. PCC6803 possesses a two-component polyhydroxyalkanoic acid synthase similar to that of anoxygenic purple sulfur bacteria. Arch Microbiol. 170, 162-170 (1998).
  26. Ng, A. H., Berla, B. M., Pakrasi, H. B. Fine tuning of photoautotrophic protein production by combining promoters and neutral sites in Synechocystis 6803, a cyanobacterium. Appl Environ Microbiol. , (2015).
check_url/54001?article_type=t

Play Video

Cite This Article
Lea-Smith, D. J., Vasudevan, R., Howe, C. J. Generation of Marked and Markerless Mutants in Model Cyanobacterial Species. J. Vis. Exp. (111), e54001, doi:10.3791/54001 (2016).

View Video