Summary

人类多能干细胞的模板微图案用于探测分化命运的空间组织

Published: June 17, 2016
doi:

Summary

人多能干细胞(hPSCs)具有分化和自我组织成不同的组织型态的内在能力;尽管这需要空间环境梯度的表现。我们提出模版图案化作为一种​​简单而可靠的方法,以产生生物化学和机械梯度用于控制HPSC分化模式。

Abstract

Human pluripotent stem cells (hPSCs), including embryonic stem cells and induced pluripotent stem cells, have the intrinsic ability to differentiate into all three germ layers. This makes them an attractive cell source for regenerative medicine and experimental modeling of normal and diseased organogenesis. However, the differentiation of hPSCs in vitro is heterogeneous and spatially disordered. Cell micropatterning technologies potentially offer the means to spatially control stem cell microenvironments and organize the resultant differentiation fates. Micropatterning hPSCs needs to take into account the stringent requirements for hPSC survival and maintenance. Here, we describe stencil micropatterning as a method that is highly compatible with hPSCs. hPSC micropatterns are specified by the geometries of the cell stencil through-holes, which physically confine the locations where hPSCs can access and attach to the underlying extracellular matrix-coated substrate. Due to this mode of operation, there is greater flexibility to use substrates that can adequately support hPSCs as compared to other cell micropatterning methods. We also highlight critical steps for the successful generation of hPSC micropatterns. As an example, we demonstrate that stencil micropatterning of hPSCs can be used to modulate spatial polarization of cell-cell and cell-matrix adhesions, which in turn determines mesoendoderm differentiation patterns. This simple and robust method to micropattern hPSCs widens the prospects of establishing experimental models to investigate tissue organization and patterning during early embryonic development.

Introduction

人多能干细胞(hPSCs),包括胚胎干细胞(胚胎干细胞)和诱导多能干细胞(人iPS细胞),被广泛利用于再生医学以及正常和病变器官的实验模型,因为它们的分化潜能的进入所有的细胞谱系三种胚层1,2。 hPSCs分化命运是可以调节通过物理线索3-5介导的自分泌或旁分泌信号1以及机械传导过程当地的环境因素非常敏感。细胞微图案包括一组已发展到在空间上组织的细胞群的几何形状和位置作为平均值来控制本地细胞微环境,如细 ​​胞-细胞相互作用6和细胞-基质相互作用3的技术。在hPSCs的背景下,细胞微已被用来获得显著的认识到如何利基依赖耳鼻喉科自分泌信号调节胚胎干细胞多能性分化的第7和组织成早期胚胎分化的模式6。二维和三维微图案hPSCs已被用来控制多细胞型态,这反过来又影响分化决定成三种胚层8,9的菌落尺寸。我们采用多HPSC微图案来调制HPSC菌落内的细胞-细胞和细胞-基质相互作用的程度来探测整联E-钙粘蛋白的串扰可以如何产生细胞命运异质10。从朝hPSCs作为实验模型用于发育疾病11,要研究的组织或器官发育过程中的生长因子和激素的影响药毒性筛选的多细胞微图案的应用上述报告打开新的途径的示范,并解开的形成组织模式。

细胞micropatter有无数宁技术已被开发作为由Falconnet 审查。人 12,但只有一小部分,如微接触印刷7,8,13,微孔文化14,15,光图案6和microstencils 16已成功地实施hPSCs。与缩微hPSCs的挑战在于他们的脆弱性和具体的细胞外基质(ECM)和生长条件的细胞附着和生存的严格的要求。对于2D HPSC模式,微接触印刷是最常用的方法,以产生对组织培养和玻璃基板13 HPSC微图案之一。该方法可用于在HPSC培养,包括层粘连蛋白和基底膜基质,如基质胶中使用图案共同的ECM。然而,它通常需要用聚-D-赖氨酸辅助的两步涂层的方法,并且需要特定的惰性大气和湿度条件下,使稳定的ECM微图案为hPSCs到6,13- ​​附加。每个图案化方法的首要考虑因素是表面修饰制度是否能够产生在所需的几何分辨率HPSC粘性ECM模式,同时尽量减少非特异性的细胞附着到周边地区。

在这里,我们报告的模板使用缩微作为一种简单的方法来产生HPSC微图案无粘结ECM模式产生之前的其他表面改性步骤hPSCs附加上。小区模版包括薄膜, 例如,聚二甲基硅氧烷(PDMS)片材,具有微米到毫米的通孔密封到一个细胞培养基材的物理上包含ECM的涂料,并随后接种hPSCs大小。作为模版图案形成工程通过物理约束,其中HPSC可以访问和连接直接到下面的ECM涂覆的衬底的位置,该方法是与能够支持HPSC培养各种基材相容。唯一requirement是该模版材料的选择可以形成与基材的可逆密封。这些底物包括常规组织培养聚苯乙烯(TCPS)17,配体缀合的基片18,以及与可调刚性的弹性体基底( 例如 ,PDMS)19。这种方法还允许不同的ECM的涂层,例如玻连蛋白(或VTN蛋白),层粘连蛋白和基底膜基质( 例如 ,基质胶和Geltrax),以允许适当附着和hPSCs的分化。为特定HPSC线。因此,我们可以传送优化的ECM-基板配置到模版图案化以获得最佳的细胞 – 基质粘附,存活和分化。最近,一个类似的方法也有报道直接通过使用聚甲基丙烯酸甲酯微图案的hESCs(PMMA)微模版阵列16肝分化。

细胞的模板可以由不同的材料制成,包括满足ALS 20,21,聚(对苯二甲基)聚合物22,23,聚甲基丙烯酸甲酯16和最常见的是,PDMS 24-28。硅和聚(对-亚二甲苯)聚合物模具需要具有专门的设备20-23,这限制了它们的可访问生物用户通孔的直接蚀刻。 PDMS模具可以通过根据所需的特征尺寸,其通常从3微米至2,000微米11,26-29范围不同的方法来制造。如果小的功能需要,薄板材制版可通过冲压成型PDMS在包含微图案28的浮雕精细加工硅模板预聚物生产。为特征> 1000微米,CO 2激光切割器提供了一种简单和低成本的方法模版制造期间直接切上的预铸的PDMS片的图案。 PDMS模具的可回收也使得它们具有成本效益的,进行了一系列的具有足够一致性的实验。

<p cl屁股=“jove_content”>在这里,我们介绍的详细方法为PDMS模板由激光切割制造1000微米的特性和人类胚胎干细胞微图案的产生。这些胚胎干细胞微图案被用于调节整联的程度和E-cadherin介导的凝聚力的hESC集落内粘连以便调查细胞粘附的空间偏振如何导致细胞命运异质10。

Protocol

备注:本协议描述PDMS模具的制造与1000微米的图案通过激光切割和图案化的人类胚胎干细胞系,H9使用PDMS模板。 1.设计和微图案PDMS模板的制作设计具有所需的几何形状和尺寸( 例如 ,1000微米圈)和使用计算机辅助设计软件10模版垫片的贯通孔的制版薄板。 激光切割的120-150微米和2毫米厚的聚二甲基硅氧烷(PDMS)片分别使用CO 2激光切割?…

Representative Results

在本文中,我们通过使用激光切割机产生1000微米的特征描述模板电池的制造。模版被由两部分组成:一薄镂花片含有通孔的微图案(大约100-200微米厚),以及将PDMS垫片以包含ECM的包衣溶液或细胞悬浮液。这里,127微米和2毫米厚的市售的PDMS片分别用作制版片和垫圈。制备可控厚度的PDMS片,例如旋涂等方法,也可用于制造的部件。两种成分通过使用液态未固化的PDMS预聚物…

Discussion

微图案模板的制作

模板缩微提供生成HPSC微图案调查利基介导的分化图案的理想方法。比其他图案化技术,例如微接触印刷和光图案模版图案形成的主要优点是,它不需要表面改性,可在常规的TCPS衬底来实现。因此,对于不同的HPSC线进行了优化培养基和ECM涂料可以很容易地转移到模版图案化。

有有助于良好微图案的产生的细胞模版的…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作是由新加坡国立大学(R-397-000-192-133)和ETPL峡基金(R-397-000-198-592)支持的启动资助。 GS是新加坡国立大学的研究学者。作者想感谢Jiangwa兴博士为她的细胞微技术支持。

Materials

 2 mm thick PDMS sheet Specialty Silicone Products Inc., USA SSPM823-.005 Used to form reservoir for stencil
120-150 μm thick PDMS sheet Specialty Silicone Products Inc., USA SSPM823-.040 Used to form stencil 
60 mm petri dish  Nunc Nunclon Delta 150326 Substrate for micropatterning
Accutase Accutase, Merck Millipore, Singapore SCR005 Enzyme to break H9 Cells into single cells
Activin   R&D Systems, Singapore 338-AC-010 Growth factor for H9 differentiation
BMP4  R&D Systems, Singapore 338-BP-010 Growth factor for H9 differentiation
Plasma system   Femto Science, Korea CUTE-MP For plasma oxidation of stencil
Dispase StemCell™ Technologies, Singapore 7923 Enzyme used to weaken the cell-ECM adhesion during passaging
DMEM/F12 GIBCO, USA 11330032 Basal medium for H9 cells
FGF2  R&D Systems, Singapore 233–FB–025 Growth factor for H9 differentiation
H9 Cell line WiCell Research Institute, Inc., USA WA09 Human embryonic stem cells
hESC-qualified basement membrane matrix Matrigel, BD Biosciences, Singapore 354277 Extra-cellular matrix coating to support growth of H9 cells
Inverted microscope Leica Microsystems, Singapore DMi1 For capturing bright-field images
Laser cutter Epilog Helix 24 Laser System Used to generate through holes in PDMS sheet
mTeSR1 medium  StemCell™ Technologies, Singapore 5850 Maintainence medium for H9 cells
PDMS  SYLGARD® 184, Dow Corning Co., USA 3097358-1004 Used for sticking the PDMS stencil and reservior
ROCKi Y27632 Calbiochem, Merck Millipore, Singapore 688000 Maintains H9 cells as single cells 
STEMdiff APEL medium  StemCell™ Technologies, Singapore 5210 Differentiation medium for H9 cells
Polyethylene terephthalate film SureMark Singapore SQ-6633 Used to form stencil 
Cell culture compatible non-ionic surfactant Pluronic acid F-127, Sigma, Singapore P2443 Passivating reagent to repel cell adhesion in non-micropatterned substrates

References

  1. Graf, T., Stadtfeld, M. Heterogeneity of embryonic and adult stem cells. Cell Stem Cell. 3 (5), 480-483 (2008).
  2. Nishikawa, S., Goldstein, R. A., Nierras, C. R. The promise of human induced pluripotent stem cells for research and therapy. Nat Rev Mol Cell Biol. 9 (9), 725-729 (2008).
  3. Guilak, F., Cohen, D. M., Estes, B. T., Gimble, J. M., Liedtke, W., Chen, C. S. Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell. 5 (1), 17-26 (2009).
  4. Dalby, M. J., Gadegaard, N., Oreffo, R. O. Harnessing nanotopography and integrin-matrix interactions to influence stem cell fate. Nat Mater. 13 (6), 558-569 (2014).
  5. Joddar, B., Ito, Y. Artificial niche substrates for embryonic and induced pluripotent stem cell cultures. J Biotechnol. 168 (2), 218-228 (2013).
  6. Warmflash, A., Sorre, B., Etoc, F., Siggia, E. D., Brivanlou, A. H. A method to recapitulate early embryonic spatial patterning in human embryonic stem cells. Nat Methods. 11 (8), 847-854 (2014).
  7. Peerani, R., et al. Niche-mediated control of human embryonic stem cell self-renewal and differentiation. EMBO J. 26 (22), 4744-4755 (2007).
  8. Lee, L. H., Peerani, R., Ungrin, M., Joshi, C., Kumacheva, E., Zandstra, P. Micropatterning of human embryonic stem cells dissects the mesoderm and endoderm lineages. Stem Cell Res. 2 (2), 155-162 (2009).
  9. Hwang, Y. S., Chung, B. G., Ortmann, D., Hattori, N., Moeller, H. C., Khademhosseini, A. Microwell-mediated control of embryoid body size regulates embryonic stem cell fate via differential expression of WNT5a and WNT11. Proc Natl Acad Sci U S A. 106 (40), 16978-16983 (2009).
  10. Toh, Y. C., Xing, J., Yu, H. Modulation of integrin and E-cadherin-mediated adhesions to spatially control heterogeneity in human pluripotent stem cell differentiation. Biomaterials. 50, 87-97 (2015).
  11. Xing, J., Toh, Y. C., Xu, S., Yu, H. A method for human teratogen detection by geometrically confined cell differentiation and migration. Sci Rep. 5, 10038 (2015).
  12. Falconnet, D., Csucs, G., Grandin, H. M., Textor, M. Surface engineering approaches to micropattern surfaces for cell-based assays. Biomaterials. 27 (16), 3044-3063 (2006).
  13. Bauwens, C. L., et al. Control of human embryonic stem cell colony and aggregate size heterogeneity influences differentiation trajectories. Stem Cells. 26 (9), 2300-2310 (2008).
  14. Khademhosseini, A., et al. Co-culture of human embryonic stem cells with murine embryonic fibroblasts on microwell-patterned substrates. Biomaterials. 27 (36), 5968-5977 (2006).
  15. Mohr, J. C., de Pablo, J. J., Palecek, S. P. 3-D microwell culture of human embryonic stem cells. Biomaterials. 27 (36), 6032-6042 (2006).
  16. Yao, R., et al. Hepatic differentiation of human embryonic stem cells as microscaled multilayered colonies leading to enhanced homogeneity and maturation. Small. 10 (21), 4311-4323 (2014).
  17. Mei, Y., et al. Combinatorial development of biomaterials for clonal growth of human pluripotent stem cells. Nat Mater. 9 (9), 768-778 (2010).
  18. Melkoumian, Z., et al. Synthetic peptide-acrylate surfaces for long-term self-renewal and cardiomyocyte differentiation of human embryonic stem cells. Nat Biotechnol. 28 (6), 606-610 (2010).
  19. Evans, N. D., et al. Substrate stiffness affects early differentiation events in embryonic stem cells. Eur Cell Mater. 18, 1-13 (2009).
  20. Carter, S. B. Haptotactic islands: a method of confining single cells to study individual cell reactions and clone formation. Exp Cell Res. 48 (1), 189-193 (1967).
  21. Jimbo, Y., Robinson, H. P., Kawana, A. Simultaneous measurement of intracellular calcium and electrical activity from patterned neural networks in culture. IEEE Trans Biomed Eng. 40 (8), 804-810 (1993).
  22. Wright, D., et al. Reusable, reversibly sealable parylene membranes for cell and protein patterning. J Biomed Mater Res. A. 85 (2), 530-538 (2008).
  23. Jinno, S., et al. Microfabricated multilayer parylene-C stencils for the generation of patterned dynamic co-cultures. J Biomed Mater Res A. 86 (1), 278-288 (2008).
  24. Jackman, R. J., Duffy, D. C., Cherniavskaya, O., Whitesides, G. M. Using elastomeric membranes as dry resists and for dry lift-off. Langmuir. 15 (8), 2973-2984 (1999).
  25. Folch, A., Jo, B. H., Hurtado, O., Beebe, D. J., Toner, M. Microfabricated elastomeric stencils for micropatterning cell cultures. J Biomed Mater Res. 52 (2), 346-353 (2000).
  26. Park, J., et al. Microfabrication-based modulation of embryonic stem cell differentiation. Lab Chip. 7 (8), 1018-1028 (2007).
  27. Choi, J. H., Lee, H., Jin, H. K., Bae, J. S., Kim, G. M. Micropatterning of neural stem cells and Purkinje neurons using a polydimethylsiloxane (PDMS) stencil. Lab Chip. 12 (23), 5045-5050 (2012).
  28. Li, W., et al. NeuroArray: a universal interface for patterning and interrogating neural circuitry with single cell resolution. Sci Rep. 4, 4784 (2014).
  29. Guvanasen, G. S., Mancini, M. L., Calhoun, W. A., Rajaraman, S., DeWeerth, S. P. Polydimethylsiloxane Microstencils Molded on 3-D-Printed Templates. J Microelectromech S. 23 (5), 1045-1053 (2014).
  30. Palchesko, R. N., Zhang, L., Sun, Y., Feinberg, A. W. Development of polydimethylsiloxane substrates with tunable elastic modulus to study cell mechanobiology in muscle and nerve. PLoS One. 7 (12), 51499 (2012).
  31. Chowdhury, F., et al. Material properties of the cell dictate stress-induced spreading and differentiation in embryonic stem cells. Nat Mater. 9 (1), 82-88 (2010).
  32. Gjorevski, N., Boghaert, E., Nelson, C. M. Regulation of Epithelial-Mesenchymal Transition by Transmission of Mechanical Stress through Epithelial Tissues. Cancer Microenviron. 5 (1), 29-38 (2012).
  33. Thery, M. Micropatterning as a tool to decipher cell morphogenesis and functions. J Cell Sci. 123, 4201-4213 (2010).
  34. Eroshenko, N., Ramachandran, R., Yadavalli, V. K., Rao, R. R. Effect of substrate stiffness on early human embryonic stem cell differentiation. J Biol Eng. 7 (1), 7 (2013).

Play Video

Cite This Article
Sahni, G., Yuan, J., Toh, Y. Stencil Micropatterning of Human Pluripotent Stem Cells for Probing Spatial Organization of Differentiation Fates. J. Vis. Exp. (112), e54097, doi:10.3791/54097 (2016).

View Video