Summary

植物多聚核糖体剖面的简单方法

Published: August 28, 2016
doi:

Summary

This protocol describes an easy method to extract and fractionate transcripts from plant tissues on the basis of the number of bound ribosomes. It allows a global estimate of translation activity and the determination of the translational status of specific mRNAs.

Abstract

Translation of mRNA to protein is a fundamental and highly regulated biological process. Polysome profiling is considered as a gold standard for the analysis of translational regulation. The method described here is an easy and economical way for fractionating polysomes from various plant tissues. A sucrose gradient is made without the need for a gradient maker by sequentially freezing each layer. Cytosolic extracts are then prepared in a buffer containing cycloheximide and chloramphenicol to immobilize the cytosolic and chloroplastic ribosomes to mRNA and are loaded onto the sucrose gradient. After centrifugation, six fractions are directly collected from the bottom to the top of the gradient, without piercing the ultracentrifugation tube. During collection, the absorbance at 260 nm is read continuously to generate a polysome profile that gives a snapshot of global translational activity. Fractions are then pooled to prepare three different mRNA populations: the polysomes, mRNAs bound to several ribosomes; the monosomes, mRNAs bound to one ribosome; and mRNAs that are not bound to ribosomes. mRNAs are then extracted. This protocol has been validated for different plants and tissues including Arabidopsis thaliana seedlings and adult plants, Nicotiana benthamiana, Solanum lycopersicum, and Oryza sativa leaves.

Introduction

蛋白质的合成是在所有单元电池1的基本和大力昂贵的过程。首先,细胞必须在生产翻译机器中,核糖体的投资能量。例如,一个活跃分裂的酵母细胞产生每分钟高达2000核糖体。这样的生产需要高达总转录活性的60%,到小区2的总剪接活性的90%。此外,需要能量的氨基酸,氨酰tRNA和肽键的合成。在植物中,从三磷酸腺苷3 4.5至5.9分子添加一个氨基酸的肽链的成本。因此,它是不奇怪的mRNA的蛋白质的翻译调控的主要部位,特别是当它涉及到处理变化的环境条件。

翻译起始的一步,那就是与一个核糖体mRNA的关联,是调控的主要对象翻译4。作为翻译的调节的结果,以及其他转录后调控的步骤中,只有40%的蛋白质浓度的变化可通过mRNA的丰度5,6进行说明。因此,总mRNA的研究给出了关于蛋白丰度比较差的信息。另一方面,mRNA的核糖体与关联给出更好地了解蛋白质丰度通过给访问那些参与翻译的mRNA。积极翻译的mRNA与核糖体的几个称为多聚核糖体的结构有关。相反,翻译不好的mRNA将只有一个核糖体(monosome)相关联。因此,一个mRNA的转译状态可以通过监视与核糖体7的关联进行评估。

这个协议描述从六个日龄拟南芥幼苗,RNA的随后分离多聚核糖体的分离,结果的分析。宝lysom​​es和monosomes通过蔗糖密度梯度分离。梯度被收集成六个馏分。一些级分的汇集,以获得三个阱分离的部分:多核糖体,monosomes和轻馏分(以下称为上清液),其中包含不与核糖体相关的自由60S和40S核糖体亚基和的mRNA。全局翻译活性可以通过产生一个多核糖/ monosome比率,这是由该曲线下的面积的积分确定来估计,并通过比较多聚核糖体轮廓。的mRNA和蛋白质,然后从不同的级分提取并用于通过RT-PCR,定量RT-PCR,Northern印迹,微阵列,蛋白质印迹或蛋白质组学分析。该协议已经过验证的其他植物和组织。

执行此协议所需的设备在大多数实验室通常发现:没有必要为一个梯度壶。添加下一个防止冻结之前每层■从层的任意组合或干扰。无管穿孔被用于其可以通过在梯度的玻璃毛细管的浸没来实现梯度集合。因此,昂贵的超速离心管保持完好,并且可以重复使用很多次。总的来说,这使得本协议核糖体分析一个简单而廉价的方法。

Protocol

1. 20至50%(重量/体积)蔗糖梯度制备注意:梯度在13.2毫升超速离心管制成的蔗糖的4层(50%,35%和2层的20%)。在我们的经验,浇注在两个单独的层的20%蔗糖大大提高多核糖制剂的质量。 制备储备溶液。确保所有解决方案是RNA酶和DNA酶自由。 准备10X盐溶液:400毫米的Tris-HCl pH值8.4,200毫米氯化钾和100毫米氯化镁2。 准备2蔗糖解决方法:200毫?…

Representative Results

在文献中,多核糖轮廓通常由轻馏分显示出重馏分作为梯度被收集的方式所致,即从顶部至底部。因为在这里描述的方案的梯度从底部到顶部收集,我们显示轮廓开始与重馏分(多核糖体),并转到所述轻馏分(游离核糖体亚基和的RNA)( 图2A)。然后我们收集每个梯度在六个2毫升馏分,但如果多核糖体的内容更详细的分析,必须进行更小的级分可以被收集?…

Discussion

The protocol we present here is an easy and cheap method for generating polysome profiles and isolating mRNAs associated with polysomes, single ribosomes or free of ribosomes. A wide range of different polysome fractionation methods is described in the literature. The method we have described here has been optimized to keep only the necessary compounds and has been adapted for plant material. In particular, we reduced the amount of detergent11 and added chloramphenicol to the buffer to fix the chloroplastic ri…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作是由法国国家研究署(ANR-14-CE02-0010)的支持。我们感谢本杰明博士场和的Elodie Lanet博士的手稿的批判性阅读。我们感谢米歇尔Terese先生的视频编辑的帮助。

Materials

Ultracentrifuge tube, thinwall, polyallomer – 13.2 ml Beckman Coulter 331372
Ultracentrifuge tube, thinwall, polyallomer – 38.5 ml Beckman Coulter 326823
Glass capillary tube Drummond Scientific 1-000-1000
Ultracentrifuge  Beckman Coulter Optima series
Ultracentrifuge Rotor SW41 Beckman Coulter 331362
Ultracentrifuge Rotor SW32 Beckman Coulter 369650
Peristaltic pump Any
Tygon R3607 polyvinyl chloride tubing  Fisher Scientific 070534-22 Polyvinyl chloride tubing, 2.29 mm 
Fraction collector Model 2110 Bio-Rad 731-8120
UV cuvette Hellma 170.700-QS Quartz flow-through cuvette
UV Spectrophotometer Varian Cary50 Read every 0.0125 sec
All chemicals Any Use only Molecular Biology Grade
Murashige and Skoog Basal Salt Mixture (MS) Sigma-Aldrich M5524
Rnase-Free water Any
Petri Dishes Fisher Scientific 10083251 
Octylphenoxy poly(ethyleneoxy)ethanol, branched (Nonidet P40) Euromedex UN3500
Linear acrylamide (acryl carrier) ThermoFischer scientific AM9520 RNA precipitation carrier
OriginPro 8 OriginLab Analysis software

References

  1. Nelson, C. J., Millar, A. H. Protein turnover in plant biology. Nat Plants. 1 (3), 15017 (2015).
  2. Warner, J. R. The economics of ribosome biosynthesis in yeast. Trends Biochem Sci. 24 (11), 437-440 (1999).
  3. Amthor, J. S. The McCree-de Wit-Penning de Vries-Thornley Respiration Paradigms: 30 Years Later. Ann Bot. 86 (1), 1-20 (2000).
  4. Preiss, T., W Hentze, M. Starting the protein synthesis machine: eukaryotic translation initiation. BioEssays news and reviews in molecular, cellular and developmental biology. 25 (12), 1201-1211 (2003).
  5. Vogel, C., Marcotte, E. M. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet. 13 (4), 227-232 (2013).
  6. Baerenfaller, K., et al. Genome-scale proteomics reveals Arabidopsis thaliana gene models and proteome dynamics. Science. 320 (5878), 938-941 (2008).
  7. Zanetti, E., Chang, I., Gong, F., Galbraith, D. W., Bailey-Serres, J. Immunopurification of Polyribosomal Complexes of Arabidopsis for Global Analysis of Gene Expression. Plant physiol. 138 (2), 624-635 (2005).
  8. Murashige, T., Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol plant. 15 (3), 473-497 (1962).
  9. del Prete, M. J., Vernal, R., Dolznig, H., Müllner, E. W., Garcia-Sanz, J. A. Isolation of polysome-bound mRNA from solid tissues amenable for RT-PCR and profiling experiments. RNA. 13 (3), 414-421 (2007).
  10. Salinas, J., Sanchez-Serrano, J. J. . Arabidopsis protocols. , (2006).
  11. Piques, M., et al. Ribosome and transcript copy numbers, polysome occupancy and enzyme dynamics in Arabidopsis. Mol syst biol. 5 (314), 314 (2009).
  12. Morita, M., Alain, T., Topisirovic, I., Sonenberg, N. Polysome Profiling Analysis. bio-protocol. 3 (14), 3-8 (2013).
  13. Yángüez, E., Castro-Sanz, A. B., Fernández-Bautista, N., Oliveros, J. C., Castellano, M. M. Analysis of genome-wide changes in the translatome of Arabidopsis seedlings subjected to heat stress. PloS One. 8 (8), (2013).
  14. Sormani, R., et al. Sublethal cadmium intoxication in Arabidopsis thaliana impacts translation at multiple levels. Cell Physiol. 52 (2), 436-447 (2011).
  15. Lanet, E., et al. Biochemical evidence for translational repression by Arabidopsis microRNAs. Plant cell. 21 (6), 1762-1768 (2009).
  16. Jabnoune, M., Secco, D., Lecampion, C., Robaglia, C., Shu, Q., Poirier, Y. A Rice cis-Natural Antisense RNA Acts as a Translational Enhancer for Its Cognate mRNA and Contributes to Phosphate Homeostasis and Plant Fitness. Plant cell. 25 (10), 4166-4182 (2013).
  17. Ingolia, N. T. Genome-wide translational profiling by ribosome footprinting. Methods Enzymol. 470 (10), (2010).
  18. Juntawong, P., Girke, T., Bazin, J., Bailey-Serres, J. Translational dynamics revealed by genome-wide profiling of ribosome footprints in Arabidopsis. PNAS. 111 (1), 203-212 (2013).
  19. Ingolia, N. T. Ribosome profiling: new views of translation, from single codons to genome scale. Nat Rev Genet. 15 (3), 205-213 (2014).
check_url/54231?article_type=t

Play Video

Cite This Article
Lecampion, C., Floris, M., Fantino, J. R., Robaglia, C., Laloi, C. An Easy Method for Plant Polysome Profiling. J. Vis. Exp. (114), e54231, doi:10.3791/54231 (2016).

View Video