Summary

高含量<em>体外</em>胰岛β细胞复制发现平台

Published: July 16, 2016
doi:

Summary

对于糖尿病研究领域的关键挑战是要明白,调节胰岛β细胞的复制,并制定刺激β细胞再生方法的分子机制。在此高内涵筛选的方法来识别和评估小分子的β细胞复制促进活性表示。

Abstract

Loss of insulin-producing β-cells is a central feature of diabetes. While a variety of potential replacement therapies are being explored, expansion of endogenous insulin-producing pancreatic islet β-cells remains an attractive strategy. β-cells have limited spontaneous regenerative activity; consequently, a crucial research effort is to develop a precise understanding of the molecular pathways that restrain β-cell growth and to identify drugs capable of overcoming these restraints. Herein an automated high-content image-based primary-cell screening method to identify β-cell replication-promoting small molecules is presented. Several, limitations of prior methodologies are surmounted. First, use of primary islet cells rather than an immortalized cell-line maximizes retention of in vivo growth restraints. Second, use of mixed-composition islet-cell cultures rather than a β-cell-line allows identification of both lineage-restricted and general growth stimulators. Third, the technique makes practical the use of primary islets, a limiting resource, through use of a 384-well format. Fourth, detrimental experimental variability associated with erratic islet culture quality is overcome through optimization of isolation, dispersion, plating and culture parameters. Fifth, the difficulties of accurately and consistently measuring the low basal replication rate of islet endocrine-cells are surmounted with optimized immunostaining parameters, automated data acquisition and data analysis; automation simultaneously enhances throughput and limits experimenter bias. Notable limitations of this assay are the use of dispersed islet cultures which disrupts islet architecture, the use of rodent rather than human islets and the inherent limitations of throughput and cost associated with the use of primary cells. Importantly, the strategy is easily adapted for human islet replication studies. This assay is well suited for investigating the mitogenic effect of substances on β-cells and the molecular mechanisms that regulate β-cell growth.

Introduction

糖尿病包括病症共享打乱葡萄糖稳态的共同终点的集合。虽然糖尿病亚型的致病机理是不同的,它们共享降低β细胞量, ,胰岛素生产能力1,2-损失的后果。目前,糖尿病的治疗策略依赖外源性胰岛素,胰岛素的产生或增强胰岛素敏感性的药理学刺激的长期管理,也很少,胰岛或全胰腺3,4移植。令人遗憾的是,这些策略的成功是短命的和/或不能充分概括内源性胰岛素产生的作用。尽管显影刺激β细胞再生的方法的实用性,没有这样的方法存在。因此,一个重要的糖尿病研究的目标是开发的方法来产生新的β细胞或展开内源性β细胞量5 </sup>。虽然来自可再生资源,如胚胎干细胞β细胞再生正在推进,安全性和效率的关注使得替代策略,包括膨胀成熟β细胞,优先级6,7的追求。重要的是,新的β细胞在体内的主要来源是预先存在的β细胞,而不是专门祖细胞8,9。虽然β细胞看起来具有有限的复制能力,在β细胞量略有增加(〜30%)可足以在许多糖尿病患者恢复葡萄糖动态平衡。另外, β细胞量的原位药物刺激是一种潜在的廉价的和可扩展的治疗策略。这里提出了识别和表征刺激β细胞生长的小分子的高含量筛选方法。

各种体外实验方法可以用于鉴定基因产物和/或分子塔ŧ促进初级β细胞复制。用于测量β细胞复制诱导早期的努力用于胎儿啮齿动物的胰腺文化或完整隔离胰岛文化来衡量响应特定的处理条件10 [3 H]胸苷掺入,BrdU的醛,硫堇或胰岛素染色人群中掺入或有丝分裂体, 11。 这些体外的方法和密切变体具有一些局限性。突出的缺陷包括:(1)使用胎儿细胞,不同于成熟β细胞,显示高基底β细胞复制速率和在明显的方式12调节生长; (2)β细胞复制事件实验者相关裁决的主观性; (3)β细胞复制事件实验者依赖计数的劳动和时间密集性质阻碍了实验的吞吐量; (4)利用核掺入/染色/外观识别复制甚至TS和一个非重叠的胞质染色,以确定β细胞导致邻近非β细胞复制事件对β细胞的错误认定。

最近成熟原β细胞已被用于评估转基因过度表达对β细胞复制13-16的影响,以及基因产物或化合物处理。然而,这些研究还依赖于复制事件,对β细胞鉴定和/或限制通过劳动密集型的步骤, 例如 ,细胞或完整胰岛个体滑动孔电镀细胞质staining-或非特异性方法的主观计数石蜡包埋和处理17。值得注意的是,基于图像的人β细胞复制的筛选方法,类似于本文中所呈现的人,已发表​​18;然而,成功地利用该测定的尚未得到证实和利用对于初筛人胰岛的可能不是大致FEAsible。

识别复制促进物质的另一种策略是评估的β细胞系的生长诱导。最初的努力用于转化的β细胞,系如MIN6细胞或INS一十三分之八百三十二细胞14,19-21。然而,这些细胞系中表现出奔放增长,没有什么相似之处分化良好的β细胞22。因此,增长的感应能力是最小的,目前还不清楚相关的,有时难以概括。基于细胞系的筛选改进策略采用“可逆转变”是生长在没有四环素(强力霉素)的逮捕依赖SV40 T抗原表达23,24细胞。然而,目前还不清楚这些细胞是否恢复到在强力霉素除去一个“正常”β细胞样状态。不幸的是,使用这些细胞已经产生,不会出现有直接效用广义生长促进化合物24。总体而言,使用的细胞系来研究细胞类型中显示最小的自发复制活动的生长调控可能具有有限的适用性。

本文中所呈现的β细胞复制筛选平台利用成熟原代大鼠β细胞在体内的生长调节以保持在可能的范围内,混合细胞型组合物,以便能够谱系限制性生长促进性活动的胰岛细胞培养物,多-Well格式以最大化吞吐量和自动化的分析,以消除偏见和促进吞吐量。成功地利用这个平台,使促进胰岛β细胞的复制25,26几种化合物的鉴定。此外,该测定已被用于结构 – 活性关系的研究和化学上位实验以提供机械见解β细胞复制的分子调控。所提出的平台成功地适应FOβ细胞复制的RNA干扰基于-R的慢病毒调查通路25。该测定的局限性包括限制可扩展性(使用原代细胞),利用啮齿动物,而不是基于抗体的成像和初级胰岛使用,使用相关联的人胰岛细胞(尽管该测定可适于人胰岛研究),费用的的分散的胰岛(胰岛破坏架构),以方便自动图像采集和依赖性在与图像采集和分析能力的自动显微镜的可用性。虽然用于鉴定基因产物或刺激原位 β细胞再生化合物的简便体内筛选方法将是理想的,这样的平台尚不可用27。因此,所描述的平台是适合研究者感兴趣的研究β细胞复制的大多数方面。

Protocol

该协议是根据医学的斯坦福大学医学院的机构动物护理和使用委员会(IACUC)进行。 300克(8 – – 9周龄)的雄性Sprague Dawley大鼠,这足以产生228井胰岛细胞复制评估384孔板的所描述的协议从六个250缩放为胰岛分离。 1.材料准备之前通过在15厘米的组织培养皿28收集维持在合流3天804G大鼠膀胱癌细胞的条件培养基(20毫升RPMI1640的)发起胰岛分离制备涂覆介质 。无菌过滤?…

Representative Results

为了评估β细胞或α-细胞复制,需要一个四色测定方案。首先,对象由DAPI染色(通道1,386纳米)来识别。接下来,β细胞(事件1)计数:的对象共表达PDX-1 +(通道2,650纳米)和近郊核胰岛素(通道3,549纳米)。随后,复制β细胞(事件2)被计算:β-细胞(事件1),该共表达Ki-67的(信道4中,485纳米)(图3)。复制β细胞的百分比来计算:(事件2 /?…

Discussion

为研究控制β细胞的生长和再生的分子通路的实验方法对于糖尿病研究的重要工具。在此,基于大鼠胰岛筛选平台,以确定和描述β细胞复制的小分子刺激呈现。

虽然该协议的大部分内容很容易被经验丰富的研究人员进行了几步需要特别的技术。首先,胰岛分离过程中,而不破坏其完整性胆管插管需要实践。一个有用的策略是最低限度地膨胀胆管,以确保充分配药胰腺消化液?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was supported by NIDDK grants DK098143 and DK101530 from the NIH (JPA), Stanford’s Spectrum Child Health Research Institute (CHRI) and SPARK (UL1 TR001085, JPA).

Materials

250g male Male Sprague Dawly Rat Charles River Stain # 400
12 cm teeth tisuue forceps Fine Science Tools 11021-12
11.5 cm fine scissors Fine Science Tools 14058-11
14.5 cm surgical scissors Fine Science Tools 14001-14
16 cm curved forceps Fine Science Tools 11003-16
12 cm curved hepostat Fine Science Tools 13011-12
12 cm scalpel handle Fine Science Tools 10003-12
Tissue sieve-30 mesh Bellco Glass 1985-85000
Cizyme RI, 375,000 CDA units VitaCyte 005-1030
Hanks' Balanced Salt solution (Ca++ and Mg++) Gibco 24020-117
Ketamine HCl (200 mg/20 ml) JHP Pharmaceuticals NDC# 42023-113-10 to make anesthetic cocktail 
Xylazine (5 g/50 ml) LLOYD NADA# 139-236 to make anesthetic cocktail 
Histopaque 1077 Sigma H-1077 to make histopaque 1100
Histopaque 1119 Sigma H-1119 to make histopaque 1100
Newborn Calf Serum 500 ml Hyclone SH30118.03
Hanks' Balanced Salt solution Hyclone SH30268.01
Dulbecco's Modified Eagle Medium/Low Glucose  Hyclone SH30021.01
Functionality/Viability Solution  Mediatech 99-768-CV
RPMI1640 media  Hyclone SH30096.01 to make conditioned medium
804G rat bladder carcinoma cell-line Available upon request to make conditioned medium
Fetal Bovine Serum, Qualified Gibco 26160
GlutaMax-I Gibco 35050-061
Penicillin (5,000 IU/ml/Strptomycin (5 mg/ml)  MP Biomedicals 1670049
Formamide 500 mL Fisher BioReagents BP227-500
Antigen Unmasking Solution 250 mL (PH 6.0) Vector Laboratories H-3300 to make 0.15 M Sodium Sitrate solution
Dextrose, Anhydrous EMD Chemicals DX0145-1 to make 1 M glucose solution
Nomal Donkey Serum (Powder) Jackson ImmunoResearch 017-000-121
Triton X-100 Sigma T8787-100ML
Mouse anti-human Ki67 antibody BD Biosciences 556003
Goat anti-human PDX-1 antibody R&D Systems AF2419
Polyclonal Guinea Pig anti-insulin antibody Dako 2016-08
Polyclonal Rabbit anti-glucagon antibody Dako 2014-06
Polyclonal Rabbit anti-somatostatin antibody Dako 2011-08
Polyclonal chicken anti-vimentin antibody abcam ab24525
Biotin-SP-conjugated, Donkey Anti-Mouse IgG Jackson ImmunoResearch 715-065-150
StreptAvidin, Alex Flour 488 conjugated  Invitrogen S32354
Rhodamine-conjugated Donkey Anti-Goat IgG  Jackson ImmunoResearch 705-025-147
Rhodamine-conjugated Donkey Anti-Guinea Pig IgG  Jackson ImmunoResearch 706-025-148
Rhodamine-conjugated Donkey Anti-Rabbit IgG Jackson ImmunoResearch 711-025-152
Cy 5-conjugated Donkey Anti-Guinea Pig IgG  Jackson ImmunoResearch 706-175-148
Cy 5-conjugated Donkey Anti-Goat IgG Jackson ImmunoResearch 705-175-147
Cy 5-conjugated Donkey Anti-Rabbit IgG Jackson ImmunoResearch 711-175-152
Cy 5-conjugated Donkey Anti-Chicken IgG Jackson ImmunoResearch 703-175-155
DAPI Millipore S7113
Disposable Reagent Reservoir 25 mL Sorenson BioScience 39900
384 well, black/clear, tissue culture treated plate BD Falcon 353962
96 well, black/clear, tissue culture treated plate Costar 3603
Multi-channel pipettor Costar 4880
12-channel vaccume aspirator Drummond 3-000-096
Cell Scraper Falcon 353085
Isotemp Water Bath Model 2223  Fisher Scientific
High-content screening instrument: ArrayScan VTI Thermo Scientific

References

  1. Butler, A. E., et al. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes. 52 (1), 102-110 (2003).
  2. Kloppel, G., Lohr, M., Habich, K., Oberholzer, M., Heitz, P. U. Islet pathology and the pathogenesis of type 1 and type 2 diabetes mellitus revisited. Surv Synth Pathol Res. 4 (2), 110-125 (1985).
  3. Harlan, D. M., Kenyon, N. S., Korsgren, O., Roep, B. O. Current advances and travails in islet transplantation. Diabetes. 58 (10), 2175-2184 (2009).
  4. Nath, D. S., et al. Outcomes of pancreas transplants for patients with type 2 diabetes mellitus. Clin Transplant. 19 (6), 792-797 (2005).
  5. Nichols, R. J., New, C., Annes, J. P. Adult tissue sources for new beta cells. Transl Res. 163 (4), 418-431 (2014).
  6. Pagliuca, F. W., et al. Generation of functional human pancreatic beta cells in vitro. Cell. 159 (2), 428-439 (2014).
  7. Kushner, J. A., MacDonald, P. E., Atkinson, M. A. Stem cells to insulin secreting cells: two steps forward and now a time to pause. Cell Stem Cell. 15 (5), 535-536 (2014).
  8. Dor, Y., Brown, J., Martinez, O. I., Melton, D. A. Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature. 429 (6987), 41-46 (2004).
  9. Meier, J. J., et al. Beta-cell replication is the primary mechanism subserving the postnatal expansion of beta-cell mass in humans. Diabetes. 57 (6), 1584-1594 (2008).
  10. Chick, W. L., Lauris, V., Flewelling, J. H., Andrews, K. A., Woodruff, J. M. Effects of glucose on beta cells in pancreatic monolayer cultures. Endocrinology. 92 (1), 212-218 (1973).
  11. Brelje, T. C., Sorenson, R. L. Role of prolactin versus growth hormone on islet B-cell proliferation in vitro: implications for pregnancy. Endocrinology. 128 (1), 45-57 (1991).
  12. Chen, H., et al. PDGF signalling controls age-dependent proliferation in pancreatic beta-cells. Nature. 478 (7369), 349-355 (2011).
  13. Liu, H., et al. Glycogen synthase kinase-3 and mammalian target of rapamycin pathways contribute to DNA synthesis, cell cycle progression, and proliferation in human islets. Diabetes. 58 (3), 663-672 (2009).
  14. Metukuri, M. R., et al. ChREBP mediates glucose-stimulated pancreatic beta-cell proliferation. Diabetes. 61 (8), 2004-2015 (2012).
  15. Wang, P., et al. A high-throughput chemical screen reveals that harmine-mediated inhibition of DYRK1A increases human pancreatic beta cell replication. Nat Med. 21 (4), 383-388 (2015).
  16. Schisler, J. C., et al. Stimulation of human and rat islet beta-cell proliferation with retention of function by the homeodomain transcription factor Nkx6.1. Mol Cell Biol. 28 (10), 3465-3476 (2008).
  17. Fueger, P. T., Hernandez, A. M., Chen, Y. C., Colvin, E. S. Assessing replication and beta cell function in adenovirally-transduced isolated rodent islets. J Vis Exp. (64), (2012).
  18. Walpita, D., et al. A human islet cell culture system for high-throughput screening. J Biomol Screen. 17 (4), 509-518 (2012).
  19. Miyazaki, J., et al. Establishment of a pancreatic beta cell line that retains glucose-inducible insulin secretion: special reference to expression of glucose transporter isoforms. Endocrinology. 127 (1), 126-132 (1990).
  20. Song, W. J., et al. Phosphorylation and inactivation of glycogen synthase kinase 3beta (GSK3beta) by dual-specificity tyrosine phosphorylation-regulated kinase 1A (Dyrk1A). J Biol Chem. 290 (4), 2321-2333 (2015).
  21. Hohmeier, H. E., et al. Isolation of INS-1-derived cell lines with robust ATP-sensitive K+ channel-dependent and -independent glucose-stimulated insulin secretion. Diabetes. 49 (3), 424-430 (2000).
  22. Cozar-Castellano, I., et al. Lessons from the first comprehensive molecular characterization of cell cycle control in rodent insulinoma cell lines. Diabetes. 57 (11), 3056-3068 (2008).
  23. Efrat, S., Fusco-DeMane, D., Lemberg, H., aL Emran, O., Wang, X. Conditional transformation of a pancreatic beta-cell line derived from transgenic mice expressing a tetracycline-regulated oncogene. Proc Natl Acad Sci U S A. 92 (8), 3576-3580 (1995).
  24. Wang, W., et al. Identification of small-molecule inducers of pancreatic beta-cell expansion. Proc Natl Acad Sci U S A. 106 (5), 1427-1432 (2009).
  25. Annes, J. P., et al. Adenosine kinase inhibition selectively promotes rodent and porcine islet beta-cell replication. Proc Natl Acad Sci U S A. 109 (10), 3915-3920 (2012).
  26. Zhao, Z., et al. Repurposing cAMP-modulating medications to promote beta-cell replication. Mol Endocrinol. 28 (10), 1682-1697 (2014).
  27. Chen, C. A., Carolan, P. J., Annes, J. P. In vivo screening for secreted proteins that modulate glucose handling identifies interleukin-6 family members as potent hypoglycemic agents. PLoS One. 7 (9), e44600 (2012).
  28. Izumi, K., Hirao, Y., Hopp, L., Oyasu, R. In vitro induction of ornithine decarboxylase in urinary bladder carcinoma cells. Cancer Res. 41 (2), 405-409 (1981).
  29. Serup, P., et al. The homeodomain protein IPF-1/STF-1 is expressed in a subset of islet cells and promotes rat insulin 1 gene expression dependent on an intact E1 helix-loop-helix factor binding site. Biochem J. 310, 997-1003 (1995).
  30. Szabat, M., Luciani, D. S., Piret, J. M., Johnson, J. D. Maturation of adult beta-cells revealed using a Pdx1/insulin dual-reporter lentivirus. Endocrinology. 150 (4), 1627-1635 (2009).
  31. Rieck, S., et al. Overexpression of hepatocyte nuclear factor-4alpha initiates cell cycle entry, but is not sufficient to promote beta-cell expansion in human islets. Mol Endocrinol. 26 (9), 1590-1602 (2012).
  32. Wang, P., et al. Diabetes mellitus–advances and challenges in human beta-cell proliferation. Nat Rev Endocrinol. 11 (4), 201-212 (2015).
check_url/54298?article_type=t

Play Video

Cite This Article
Zhao, Z., Abdolazimi, Y., Armstrong, N. A., Annes, J. P. A High-content In Vitro Pancreatic Islet β-cell Replication Discovery Platform. J. Vis. Exp. (113), e54298, doi:10.3791/54298 (2016).

View Video