Summary

在成年小鼠中的亚型腺相关病毒9(AAV9)载体递送

Published: July 13, 2017
doi:

Summary

本研究的目的是通过在成年小鼠中使用新的唾液基因传递技术来开发和验证脊髓腺相关病毒9(AAV9)介导的基因递送的效力和安全性。

Abstract

已经报道了在成年大鼠和猪中成功开发涎腺腺相关病毒9(AAV9)载体递送技术。已经证明使用低位放置的聚乙烯导管(PE-10或PE-5)用于AAV9递送,通过脊髓实质(白色和灰色物质)在低水平注射的脊髓节段中的有效转基因表达。由于神经变性疾病的转基因小鼠模型的广泛范围,强烈希望在成年小鼠中发展有效的中枢神经系统(CNS) – 靶向载体递送技术。因此,本研究描述了在成年C57BL / 6J小鼠中开发脊髓辅助载体递送装置和技术以允许安全和有效的脊髓AAV9递送。在脊髓固定和麻醉的小鼠中,使用XYZ操纵器用尖锐的34G针切开皮肤(颈部1和腰部1-2脊柱节段水平)。第二个XYZ马然后使用咬合器将平坦的36G针推进到腰部和/或颈部的腋下空间中。然后,首先注射编码绿色荧光蛋白(GFP)的AAV9载体(3-5μL; 1.2×10 13个基因组拷贝(gc))。注射后,定期评估神经功能(运动和感觉),动物在用4%多聚甲醛递送AAV9后14天灌注固定。水平或横向脊髓切片的分析显示在整个脊髓中的转基因表达,包括灰色和白色物质。此外,在运动皮层,细胞核和网状细胞的下降的运动轴突和神经元中观察到强烈的逆行介导的GFP表达。任何动物均未观察到神经功能障碍。这些数据表明,唾液腺向量传递技术可以成功地用于成年小鼠,而不会引起与程序相关的脊髓损伤,并且与高效转基因表达有关整个脊髓神经轴突。

Introduction

使用AAV载体治疗各种脊髓和CNS神经退行性疾病正在成为一个被广泛接受的平台,可有效地上调或沉默感兴趣的基因的表达。更有效地利用该技术治疗CNS /脊髓障碍的关键限制之一是将AAV载体递送到成年哺乳动物的深部脑或脊髓实质的能力有限。

据证实,例如,AAV9的成年啮齿动物,猫,或非人灵长类动物的全身性递送是在脑和脊髓1,2,3神经元诱导转基因表达仅适度有效。 AAV9载体更有效的鞘内输送也已显示导致在解剖学定义的神经元池中只有有限的转基因表达。更具体地说,它已经是恶魔认为在非人灵长类动物,猪或啮齿动物中的顺式或骶 – 囊性鞘内AAV9传递导致脊髓α运动神经元和节段背根神经节神经元中高水平的转基因表达。然而,在脊柱的interneurons或升序或在白质下行轴突最小的或没有表达看到4个 ,5,6,7。总的来说,这些数据表明,存在高度有效的生物解剖屏障,其防止鞘内递送的AAV扩散进入更深的脊髓实质。

在以前使用成年大鼠和猪的研究中,开发了一种新型的唾液腺载体递送技术8 。使用这种方法,在单次推荐的subpial AAV9递送后证明了高效和多节段的转基因表达。一贯看到强烈的GFP表达在神经元,神经胶质细胞和下降/上升的轴突通过注射的脊髓段。这项研究首次表明,该皮肤表现出限制从鞘内空间扩散到脊髓实质的有效AAV9的主要障碍。虽然这种先前开发的技术和亚型注射装置相对容易在大型啮齿动物(如大鼠)或成年猪中使用,但该系统不适合用于小型动物,例如成年小鼠。由于各种神经变性疾病的可用转基因小鼠模型的数量很多,所以显然需要在小鼠中发展有效的脊髓实质载体递送技术。这种技术的可用性将允许研究特异性基因沉默( 例如,使用shRNA)或使用细胞非特异性( 例如巨细胞病毒-CNV或泛素)或细胞特异性( 例如,突触素或胶质细胞)的上调的作用纤维酸性蛋白质(GFAP))启动子。

因此,在本研究中,我们开发和验证了一种可以有效地用于成年小鼠的微型载体递送系统。类似地,如在以前的大鼠和猪研究中,这项工作在小鼠中单次推注AAV9单次递送后,证明在整个脊髓实质中有力的转基因表达。这种方法的简单性,注射的小鼠对于亚临床AAV9递送的非常好的耐受性以及脊髓实质中转基因表达的高效力表明该技术可以在任何实验室设置中有效地实施并用于靶向脊髓基因表达的实验中。

Protocol

这些研究是根据加利福尼亚大学圣地亚哥分校动物保健和使用委员会批准的方案进行的,并符合动物实验动物保护评估指南。所有研究都以使组大小和动物痛苦最小化的方式进行。 一般动物和手术准备 开始外科手术之前,解冻病毒(AAV9-UBI-GFP;5μL等分试样) 8 。通过将葡聚糖粉末在蒸馏水中混合,制备5%葡聚糖(10,000 MW)溶液。将病毒溶液与1…

Representative Results

亚型AAV9注射片段中强有力的转基因表达: 在AAV9递送14天后脊髓切片中转基因(GFP)表达的分析显示整个脊髓实质中具有AAV9-剂量依赖性GFP表达。首先,注射到上腰椎间质空间中的两次双侧3μL注射AAV9-UBI-GFP与全部腰脊髓中白色和灰质的近完全感染相关,延伸至上胸段( 图2A和2B ,左列和中间列)。两只双侧1.5μL注射…

Discussion

目前的研究描述了一种在成年小鼠中的辅助载体(AAV9)递送技术。如所附视频所示,该方法和技术可以有效地被使用,只要根据既定和测试的规格,正确地制造所需的仪器和穿刺针和腋下注射针。

在小鼠中进行一致和安全的唾液注射的关键技术变量:
如所证明的,在背侧颈椎或腰椎板切除术后,可以在成年麻醉的小鼠中容易地进行支气管注射。有几个关键…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项研究得到了SANPORC和ALSA基金会赠款(Martin Marsala)的支持。国家可持续发展计划,项目编号LO1609(捷克教育,青年和体育部);和RVO:67985904(Stefan Juhas和Jana Juhasova)。

Materials

C57BL/6J Mice Jackson Labs 664
Lab Standard Stereotaxic for Mice Harvard Apparatus 72-9568
Mouse Spinal Adaptor Harvard Apparatus 72-4811
XYZ Manipulator Stoelting 51604
Manual Infusion Pump Stoelting 51218
34G Beveled Nanofill Needle World Precision Instruments NF34BV-2
36G Blunt Nanofill needle World Precision Instruments NF-36BL-2
Fluriso, Isoflurane MWI Veterinary Supply 502017
Chlorhexidine Solution MWI Veterinary Supply 501027
20G Stainless Steel Needle Becton-Dickinson 305175
23G Stainless Steel Needle Becton-Dickinson 305145
30G Stainless Steel Needle Becton-Dickinson 305128
Cotton Tipped Applicator MWI Veterinary Supply 27426
Glass Capillary Beveller  Narishige International SM-25B
Slide Microscope Superfrost Leica Microsystems M80
50μl Microsyringe  Hamilton 81242
BD Intramedic PE-20 Tubing Becton, Dickinson 427406
BD Intramedic PE-10 Tubing Becton, Dickinson 427401
4-0 monofilament suture VetOne V1D397
Glass Capillary Beveller  Narishige Pipet Micro Grinder EG-40 
5 min Epoxy (Epoxy Clear) Devcon 14310
Euthanasia Solution MWI Veterinary Supply 11168
Heparin Inj 1000U/mL MWI Veterinary Supply 54254
Paraformaldehyde Sigma-Aldrich 158127
Sucrose Sigma-Aldrich S0389
Anti NeuN Antibody EMD-Millipore ABN78 Primary Rabbit Polyclonal Antibody, 1:1000
Anti-Choline Acetyltransferase (CHAT) Antibody EMD-Millipore AB144P Primary Goat Polyclonal Antibody, 1:100
Anti GFP Antibody Aves Labs GFP-1020 Primary Chicken Polyclonal Antibody, 1:1000
Donkey anti-Rabbit IgG (H+L) Secondary Antibody, Alexa Fluor 594 ThermoFisher Scientific A21207 Secondary Antibody, 1:1000
 Donkey anti-Rabbit IgG Secondary Antibody, Alexa Fluor 680 ThermoFisher Scientific A10043 Secondary Antibody, 1:1000
Donkey anti-Chicken IgY Secondary Antibody, Alexa Fluor 488 Jackson Immunoresearch Labs 703-545-155 Secondary Antibody, 1:1000
Donkey Anti-Goat IgG H&L (Alexa Fluor 647 Abcam ab150131 Secondary Antibody, 1:1000
Slide Microscope Superfrost Fisher Scientific 12-550-143
ProLong Gold Antifade Mountant Fisher Scientific P36930
Epifluorescence Microscope Zeiss Zeiss AxioImager M2
Fluorescence Confocal Microscope Olympus Olympus FV1000
Dextran Polysciences, Inc 19411
AAV9-UBC-GFP UCSD Viral Vector Core Laboratory

References

  1. Foust, K. D., et al. Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat Biotechnol. 27 (1), 59-65 (2009).
  2. Duque, S., et al. Intravenous administration of self-complementary AAV9 enables transgene delivery to adult motor neurons. Mol Ther. 17 (7), 1187-1196 (2009).
  3. Gray, S. J., et al. Preclinical differences of intravascular AAV9 delivery to neurons and glia: a comparative study of adult mice and nonhuman primates. Mol Ther. 19 (6), 1058-1069 (2011).
  4. Meyer, K., et al. Improving single injection CSF delivery of AAV9-mediated gene therapy for SMA: a dose-response study in mice and nonhuman primates. Mol Ther. 23 (3), 477-487 (2015).
  5. Foust, K. D., et al. Therapeutic AAV9-mediated suppression of mutant SOD1 slows disease progression and extends survival in models of inherited ALS. Mol Ther. 21 (12), 2148-2159 (2013).
  6. Passini, M. A., et al. Translational fidelity of intrathecal delivery of self-complementary AAV9-survival motor neuron 1 for spinal muscular atrophy. Hum Gene Ther. 25 (7), 619-630 (2014).
  7. Bell, P., et al. Motor neuron transduction after intracisternal delivery of AAV9 in a cynomolgus macaque. Hum Gene Ther Methods. 26 (2), 43-44 (2015).
  8. Miyanohara, A., et al. Potent spinal parenchymal AAV9-mediated gene delivery by subpial injection in adult rats and pigs. Mol Ther Methods Clin Dev. 3, 16046 (2016).
  9. Xu, Q., et al. In vivo gene knockdown in rat dorsal root ganglia mediated by self-complementary adeno-associated virus serotype 5 following intrathecal delivery. PLoS One. 7 (3), 32581 (2012).
  10. Xiao, X., Li, J., Samulski, R. J. Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J Virol. 72 (3), 2224-2232 (1998).
check_url/55770?article_type=t

Play Video

Cite This Article
Tadokoro, T., Miyanohara, A., Navarro, M., Kamizato, K., Juhas, S., Juhasova, J., Marsala, S., Platoshyn, O., Curtis, E., Gabel, B., Ciacci, J., Lukacova, N., Bimbova, K., Marsala, M. Subpial Adeno-associated Virus 9 (AAV9) Vector Delivery in Adult Mice. J. Vis. Exp. (125), e55770, doi:10.3791/55770 (2017).

View Video