Summary

用条件位置偏好范式恢复小鼠药物寻毒作用

Published: June 07, 2018
doi:

Summary

本协议将条件位置偏好 (CPP) 描述为复发的模型。这一程序允许测量实验动物的复发, 考虑到药物相关的环境暗示的影响, 因为戒瘾成瘾者的渴求和复发是目前药物滥用治疗方案的重点。

Abstract

本议定书将条件性场所偏好 (CPP) 描述为吸毒成瘾复发的模型。在这个模型中, 动物首先被训练来获得在药物配对的车厢内的条件位置偏好, 并在后调理测试后, 他们执行几个疗程, 以扑灭既定的偏好。CPP 允许评估与环境线索有关的药物的条件奖励效果。然后, 被扑灭的 CPP 可以由非特遣队管理的药物的启动剂量, 并接触到压力刺激恢复。这两种方法都将在这里解释。当动物 reinitiates 行为反应时, 被认为已经发生了条件性奖励的恢复。

该协议的主要优点是它具有非侵入性、成本低廉、操作简单、有效性标准好等特点。此外, 它允许研究不同的环境操作, 如压力或饮食, 这可以调节复发的药物寻求行为。然而, 一个限制是, 如果研究人员的目的是探索药物的动机和主要的增强作用, 它应该辅以自我管理程序, 因为它们涉及操作性反应的动物。

Introduction

条件位置偏好 (CPP) 范式提供了一个简单的方法来评估不同刺激1,2诱导的条件奖励, 并已广泛用于研究成瘾药物的条件奖励效果3.它是基于巴甫洛夫调节, 评估药物相关环境提示的动机价值, 以维持成瘾行为4。在这个模型中, 环境线索获得二次食欲属性 (条件奖励效果) 配对与一个初级强化3。例如, 最初中性的地方 (如 CPP 笼中一个隔间的颜色) 与在某些调理疗程5中滥用药物的具体效果成对, 而另一隔间则与注射车辆有关。根据调理, 如果动物花更多的时间在以前与药物相关的车厢里, 假设 CPP 已经发展了3。当动物对与药物有关的环境线索给予积极的价值时, 这种偏爱的确立就会实现, 这是主要的强化。因此, 动物将执行行为药物寻求反应, 以回应这些上下文线索6。CPP 模型允许对药物的阈剂量的奖励性质进行评估, 表明在特定条件下的动物 (例如, 以前遭受过社会失败) 是否更容易受到伤害, 并且对剂量敏感。不有效在天真的动物7

CPP 模型也被用来评估灭绝/恢复作为一个动物模型研究复发3, 这是本议定书的目的。有三不同的阶段: 收购、灭绝和恢复 (图 1)。在 cpp 恢复模型中, 动物首先获得用于药物配对的舱的 cpp, 然后他们执行几个消光疗程。我们将灭绝定义为动物减少其行为反应的时间, 它的近似值被被去除的条件奖励刺激 (例如, 药物)8。在灭绝期间, 动物在没有药物的情况下探索隔间, 使获得的偏爱逐渐衰减9。需要考虑的一个重要问题是, 动物在灭绝期间所表现出的行为变化 (在药物配对的间隔时间逐渐减少) 可能是由于新的学习过程与先前所学的反应相竞争,或由于主题3的内部激励状态的减少。最后, 通过上下文或药物线索重建地方偏好将是我们恢复1的模式。

管理相关药物的启动注射可以恢复偏爱, 这被认为是对上下文线索的近似的重建。药物启动恢复发生的原因是持续记忆的药物的愉悦效果, 这导致渴望和激励动物寻求与奖励有关的环境线索。

CPP 恢复模型的一些优点是, 该程序是无侵入性的 (与自我管理相比, 需要手术), 成本低廉, 而且简单。此外, 这个模型有一个良好的标准有效性, 因为它模仿的人发生在10,11, 诱导恢复与刺激, 诱发复发, 如再次接触药物12,13或压力14

还有其他技术, 如灭绝–静脉注射自我管理的恢复模式。在这里, 动物按一个杠杆来自我管理的药物, 允许评估的行为反应的动物, compulsivity, 和动机14,15,16。cpp 对自我管理程序的主要好处是, cpp 恢复被认为是反映了与药物配对的情境刺激的激励动机价值的重新激活, 包括这种方法的再现。行为到上下文17。此外, 非药物刺激, 如压力, 也可以诱发恢复18,19。例如, 一项自我管理研究表明, 在足部休克或克制压力20后, 对恢复海洛因摄入量没有影响。作者讨论说, 这是不成功的, 因为这些压力在自我管理室外测试在不同的背景下。相比之下, 在使用 cpp 恢复模型时, 吗啡诱导的 cpp 在使用相同的压力源后有明显的重建, 并在不同的环境下应用于 cpp 和不同时间 (0 和15分钟的压力暴露后)18.

文献中的几项研究显示了不同的药物和应力诱发恢复方法。一方面, 用吗啡5212223、可卡因2425、安非他明26, 对大鼠和小鼠进行药物诱导恢复的报告, 27, 乙醇28,29, 34-Methylenedioxymethamphetamine (摇头丸)30。另一方面, 暴露于压力可能是易受药物滥用影响的一个决定性因素。压力是已知的增加奖励效果的药物7,31,32和他们的作用在复发是很好建立 33,34。例如, 在与同种恢复吗啡和可卡因 CPP18,19的社会互动中失败。此外, 遭受多次社会失败的动物更容易受到阈剂量可卡因的条件奖励效应的影响, 并恢复了极低剂量的可卡因7的偏爱。

CPP 恢复模型的应用是评估动物易复发性的一种有用和敏感的方法, 并允许对不同的微妙环境操作进行评估, 这些操作是威胁人类复发的主要诱因, 如药物或压力引起的恢复。

Protocol

所有涉及小鼠及其照料的程序都符合国家、区域和地方法律和条例, 这些法规符合欧洲议会和2010年9月22日理事会关于保护使用动物的指示 2010/63/欧盟。科学目的。瓦伦西亚大学动物使用和护理委员会批准了本议定书。 1. 条件位置偏好的材料和设置: 处理老鼠3天前测试 1-2 分钟每。应该抓住尾部的底座。如果可能, 应支持该机构。这样做是为了尽量减少在处理动物时的疼…

Representative Results

首先, 在图 7中使用成年 OF1 雄性小鼠, 显示了启动和应力诱发恢复的代表性结果。 图 7a b中的数据表示在药物配对的前、后 c 试验中所花费的时间, 采用重复测量方差分析法, 在受试者可变天数 (比较前 c 和后 c)。结果显示, 可变日的显著影响 [F (134) = 51.179; p < 0.001…

Discussion

药物成瘾研究的重点是发展治疗, 减少渴求, 从而减少易复发的脆弱性。由于 CPP 范式的恢复模式, 有可能研究不同的程序和环境因素对复发的影响, 这是未来研究的重点。有一些重要的问题需要考虑, 因为 CPP 范式是一个对环境因素高度敏感的测试。

修改和疑难解答:恢复模式的 CPP 版本应根据感兴趣的药物进行修改。有不同的因素, 可能会影响到条件偏好的大小, 如…

Disclosures

The authors have nothing to disclose.

Acknowledgements

加泰罗尼亚自治区 Valenciana, PROMETEOII 2014/063;卫生部、社会服务和平等部。政府对国家药物计划、药物依赖性研究项目2014I007 的代表团;经济和竞争力部 (MINECO), 卫生研究所卡洛斯 III. 成瘾性疾病网络 RD12/0028/0005 和 RD16/0017/0007 和欧洲联盟, 菲德基金 “manera de hacer 欧罗巴”, PSI2014-51847 R。

Materials

MONPRE 2Z software CIBERTEC S.A., Spain N/A
Identical Plexiglas boxes with two equal sized compartments separated by a grey central area. CIBERTEC S.A., Spain N/A The compartments have different colored walls (black vs white) and distinct floor textures (fine grid in the black compartment and wide grid in the white one). All boxes are equipped with four infrared light beams in each compartment of the box and six in the central area which allow the recording of the position of the animal and its crossings from one compartment to the other.
Cocaine hydrochloride Laboratorios Alcaliber S.A., Madrid, Spain N/A
Animals: mice of the OF1 outbred strain Charles River, Barcelona Spain N/A Male mice who arrive to the laboratory on PND 42 and on PND 60 perform the CPP test. These animals are specially indicated for social defeat and aggression models.
Standard Diet- Teklad Global Diet 2014 Supplied by Harlan Laboratories Models, S. L. (Barcelona, Spain) 13 kcal % fat, 67 kcal % carbohydrates and 20% kcal protein; 2.9 kcal/g
High fat diet TD.06415 45 kcal % fat, 36 kcal % carbohydrates and 19% kcal protein; 4.6 kcal/g

References

  1. Bardo, M., Bevins, R. Conditioned place preference: what does it add to our preclinical understanding of drug reward?. Psychopharmacology. 153, 31 (2000).
  2. Tzschentke, T. M. Review on CPP: Measuring reward with the conditioned place preference (CPP) paradigm: update of the last decade. Addiction biology. 12 (3-4), 227-462 (2007).
  3. Aguilar, M. A., Rodríguez-Arias, M., Miñarro, J. Neurobiological mechanisms of the reinstatement of drug-conditioned place preference. Brain research reviews. 59 (2), 253-277 (2009).
  4. García-Pardo, M. P., Roger-Sánchez, C., De la Rubia Ortí, J. E., Aguilar, M. A. Animal models of drug addiction. Adicciones. 12, 823 (2017).
  5. Manzanedo, C., Aguilar, M. A., Rodrı́guez-Arias, M., Miñarro, J. Effects of dopamine antagonists with different receptor blockade profiles on morphine-induced place preference in male mice. Behavioural brain research. 121 (1), 189-197 (2001).
  6. Robbins, T. W. The acquisition of responding with conditioned reinforcement: effects of pipradrol, methylphenidate, d-amphetamine, and nomifensine. Psychopharmacology. 58 (1), 79-87 (1978).
  7. Montagud-Romero, S., Nuñez, C., Blanco-Gandia, M. C., Martínez-Laorden, E., Aguilar, M. A., Navarro-Zaragoza, J., et al. Repeated social defeat and the rewarding effects of cocaine in adult and adolescent mice: dopamine transcription factors, proBDNF signaling pathways, and the TrkB receptor in the mesolimbic system. Psychopharmacology. , (2017).
  8. Pavlov, I. P. . Conditioned Reflexes. , (1927).
  9. Yahyavi-Firouz-Abadi, N., See, R. E. Anti-relapse medications: preclinical models for drug addiction treatment. Pharmacology & therapeutics. 124 (2), 235-247 (2009).
  10. Epstein, D. H., Preston, K. L., Stewart, J., Shaham, Y. Toward a model of drug relapse: an assessment of the validity of the reinstatement procedure. Psychopharmacology. 189 (1), 1-16 (2006).
  11. Geyer, M. A., Markou, A., Bloom, F. E., Kupfer, D. J. Animal models of psychiatric disorders. Psychopharmacology: the Fourth Generation of Progress. , 787-798 (1995).
  12. De Wit, H. Priming effects with drugs and other reinforcers. Experimental and Clinical Psychopharmacology. 4 (1), 5 (1996).
  13. Wang, B., Luo, F., Zhang, W. T., Han, J. S. Stress or drug priming induces reinstatement of extinguished conditioned place preference. Neuroreport. 11 (12), 2781-2784 (2000).
  14. Shalev, U., Erb, S., Shaham, Y. Role of CRF and other neuropeptides in stress-induced reinstatement of drug seeking. Brain research. 1314, 15-28 (2010).
  15. Bossert, J. M., Marchant, N. J., Calu, D. J., Shaham, Y. The reinstatement model of drug relapse: recent neurobiological findings, emerging research topics, and translational research. Psychopharmacology. 229 (3), 453 (2013).
  16. Weiss, F. Neurobiology of craving, conditioned reward and relapse. Current opinion in pharmacology. 5 (1), 9-19 (2005).
  17. Mueller, D., Stewart, J. Cocaine-induced conditioned place preference: reinstatement by priming injections of cocaine after extinction. Behavioural brain research. 115 (1), 39-47 (2000).
  18. Ribeiro Do Couto, B., Aguilar, M. A., Manzanedo, C., Rodriguez-Arias, M., Armario, A., Miñarro, J. Social stress is as effective as physical stress in reinstating morphine-induced place preference in mice. Psychopharmacology. 185 (4), 459-470 (2006).
  19. Titomanlio, F., Manzanedo, C., Rodríguez-Arias, M., Mattioli, L., Perfumi, M., Miñarro, J., Aguilar, M. A. Rhodiola rosea impairs acquisition and expression of conditioned place preference induced by cocaine. Evidence-Based Complementary and Alternative Medicine. , (2013).
  20. Shalev, U., Highfield, D., Yap, J., Shaham, Y. Stress and relapse to drug seeking in rats: studies on the generality of the effect. Psychopharmacology. 150 (3), 337-346 (2000).
  21. Lu, L., Ceng, X., Huang, M. Corticotropin-releasing factor receptor type 1 mediates stress-induced relapse to opiate dependence in rats. Neuroreport. 11 (11), 2373-2378 (2000).
  22. Ribeiro Do Couto, B., Aguilar, M. A., Manzanedo, C., Rodriguez-Arias, M., Miñarro, J. Reinstatement of morphine-induced conditioned place preference in mice by priming injections. Neural Plast. 10, 279-290 (2003).
  23. Do Couto, B. R., Aguilar, M. A., Rodriguez-Arias, M., Miñarro, J. Long-lasting rewarding effects of morphine induced by drug primings. Brain research. 1050 (1), 53-63 (2005).
  24. Maldonado, C., Rodriguez-Arias, M., Castillo, A., Aguilar, M. A., Miñarro, J. Gamma-hydroxybutyric acid affects the acquisition and reinstatement of cocaine-induced conditioned place preference in mice. Behav. Pharmacol. 17, 119-131 (2006).
  25. Maldonado, C., Rodriguez-Arias, M., Castillo, A., Aguilar, M. A., Miñarro, J. Effect of memantine and CNQX in the acquisition, expression and reinstatement of cocaine-induced conditioned place preference. Prog. Neuropsychopharmacol. Biol. Psychiatry. 31, 932-939 (2007).
  26. Cruz, F. C., Marin, M. T., Planeta, C. S. The reinstatement of amphetamine-induced place preference is long-lasting and related to decreased expression of AMPA receptors in the nucleus accumbens. Neuroscience. 151, 313-319 (2008).
  27. Li, S. M., Ren, Y. H., Zheng, J. W. Effect of 7-nitroindazole on drug-priming reinstatement of D-methamphetamine-induced conditioned place preference. Eur. J. Pharmacol. 443, 205-206 (2002).
  28. Font, L., Miquel, M., Aragon, C. M. Involvement of brain catalase activity in the acquisition of ethanol-induced conditioned place preference. Physiol. Behav. 93, 733-741 (2008).
  29. Roger-Sánchez, C., Aguilar, M. A., Rodríguez-Arias, M., Aragon, C. M., Miñarro, J. Age-and sex-related differences in the acquisition and reinstatement of ethanol CPP in mice. Neurotoxicology and teratology. 34 (1), 108-115 (2012).
  30. Daza-Losada, M., Do Couto, B. R., Manzanedo, C., Aguilar, M. A., Rodríguez-Arias, M., Miñarro, J. Rewarding effects and reinstatement of MDMA-induced CPP in adolescent mice. Neuropsychopharmacology. 32 (8), 1750-1759 (2007).
  31. Will, M. J., Watkins, L. R., Maier, S. F. Uncontrollable stress potentiates morphine’s rewarding properties. Pharmacol. Biochem. Behav. 60, 655-664 (1998).
  32. Der-Avakian, A., Will, M. J., Bland, S. T., Deak, T., Nguyen, D. T., Schmid, M. J., Spencer, R. L., Watkins, L. R., Maier, S. F. Surgical and pharmacological suppression of glucocorticoids prevents the enhancement of morphine conditioned place preference by uncontrollable stress in rats. Psychopharmacology. 179, 409-417 (2005).
  33. Sinha, R. How does stress increase risk of drug abuse and relapse?. Psychopharmacology. 158, 343-359 (2001).
  34. Lu, L., Shepard, J. D., Hall, F. S., Shaham, Y. Effect of environmental stressors on opiate and psychostimulant reinforcement, reinstatement and discrimination in rats: a review. Neurosci. Biobehav. Rev. 27, 457-491 (2003).
  35. Vidal-Infer, A., Arenas, M. C., Daza-Losada, M., Aguilar, M. A., Miñarro, J., Rodríguez-Arias, M. High novelty-seeking predicts greater sensitivity to the conditioned rewarding effects of cocaine. Pharmacol Biochem Behav. 102, 124-132 (2012).
  36. Reguilón, M. D., Montagud-Romero, S., Ferrer-Perez, C., Roger-Sánchez, C., Aguilar, M. A., Miñarro, J., Rodríguez-Arias, M. Dopamine D2 receptors mediate the increase in reinstatement of the conditioned rewarding effects of cocaine induced by acute social defeat. European Journal of Pharmacology. 799, 48-57 (2017).
  37. Ribeiro Do Couto, B., Aguilar, M. A., Lluch, J., Rodríguez-Arias, M., Miñarro, J. Social experiences affect reinstatement of cocaine-induced place preference in mice. Psychopharmacology. 207 (3), 485-498 (2009).
  38. Blanco-Gandía, M. C., Aracil-Fernández, A., Montagud-Romero, S., Aguilar, M. A., Manzanares, J., Miñarro, J., Rodríguez-Arias, M. Changes in gene expression and sensitivity of cocaine reward produced by a continuous fat diet. Psychopharmacology. 234 (15), 2337-2352 (2017).
  39. Tzschentke, T. M. Measuring reward with the conditioned place preference paradigm: a comprehensive review of drug effects, recent progress and new issues. Progress in neurobiology. 56 (6), 613-672 (1998).
  40. Blanco-Gandía, M. C., Ledesma, J. C., Aracil-Fernández, A., Navarrete, F., Montagud-Romero, S., Aguilar, M. A., Manzanares, J., Miñarro, J., Rodríguez-Arias, M. The rewarding effects of ethanol are modulated by binge eating of a high-fat diet during adolescence. Neuropharmacology. 121, 219-230 (2017).
  41. Itzhak, Y., Martin, J. L. Cocaine-induced conditioned place preference in mice: induction, extinction and reinstatement by related psychostimulants. Neuropsychopharmacology. 26 (1), 130-134 (2002).
  42. Kreibich, A. S., Blendy, J. A. cAMP response element-binding protein is required for stress but not cocaine-induced reinstatement. Journal of Neuroscience. 24 (30), 6686-6692 (2004).
  43. Zavala, A. R., Weber, S. M., Rice, H. J., Alleweireldt, A. T., Neisewander, J. L. Role of the prelimbic subregion of the medial prefrontal cortex in acquisition, extinction, and reinstatement of cocaine-conditioned place preference. Brain research. 990 (1), 157-164 (2003).
  44. Orsini, C., Bonito-Oliva, A., Conversi, D., Cabib, S. Genetic liability increases propensity to prime-induced reinstatement of conditioned place preference in mice exposed to low cocaine. Psychopharmacology. 198 (2), 287-296 (2008).
  45. Sun, Y., Pan, Z., Ma, Y. Increased entrances to side compartments indicate incubation of craving in morphine-induced rat and tree shrew CPP models. Pharmacology Biochemistry and Behavior. 159, 62-68 (2017).
check_url/56983?article_type=t&slug=reinstatement-drug-seeking-mice-using-conditioned-place-preference

Play Video

Cite This Article
Blanco-Gandía, M. C., Aguilar, M. A., Miñarro, J., Rodríguez-Arias, M. Reinstatement of Drug-seeking in Mice Using the Conditioned Place Preference Paradigm. J. Vis. Exp. (136), e56983, doi:10.3791/56983 (2018).

View Video