Summary

405 Nm 激光微辐照对 DNA 损伤的蛋白质招募研究

Published: March 20, 2018
doi:

Summary

研究 DNA 损伤修复动力学需要一个系统来诱发定义的亚核区域的病变。我们描述了一个方法来创建本地化的双绞合, 使用激光扫描共聚焦显微镜配备405纳米激光, 并提供自动化程序, 以量化的修复因素在这些病变的动态。

Abstract

dna 损伤反应 (DDR) 使用过多的蛋白质来检测、信号和修复 dna 损伤。描述这种反应对于了解基因组维护机制至关重要。由于在病变中的蛋白质的招募和交换是高度动态的, 他们的研究需要有能力以快速和空间分隔的方式产生 DNA 损伤。在这里, 我们描述的程序, 以当地诱发 DNA 损伤的人类细胞使用一个常用的激光扫描共聚焦显微镜配备405纳米激光线。基因组维持因子在激光条纹上的积累可以用免疫荧光 (IF) 或实时使用荧光记者标记的蛋白质来评估。使用磷酸化组蛋白 H2A。x (γ H2A x) 和复制蛋白 A (RPA) 作为标记, 该方法提供了足够的分辨率, 以区分当地征聘的因素, 从传播到相邻的染色质。我们进一步提供基于 ImageJ 的脚本, 以有效地监测 DNA 损伤部位蛋白质孵育由的动力学。这些改进大大简化了对复员方案动力学的研究。

Introduction

细胞不断暴露在 DNA 损伤的内源和外源, 威胁着基因组的完整性。DDR 是信号通路的集合, 用于检测、信号和修复 DNA 病变以维持基因组的稳定性。在 DNA 双链断裂 (DSBs), DDR 主要发生在两个互补平台上: γ H2A. X 标记染色质和切除的单链 DNA (ssDNA) 区域, 通常涂有 ssDNA 绑定的复杂 RPA1,2

用胸苷模拟 5-溴-2 ‘ 脱氧尿苷 (BrdU) 或 bisbenzimide 乙醇三盐酸盐 (BBET, 赫斯特 33342) 对细胞进行预敏化的紫外激光微照射, 产生 dna 损伤的混合体, 包括单链断裂 (办学团体) 和 DSBs, 它在染色质和 ssDNA 平台上引出局部 DDR 3, 4.以前的研究表明, 在争端解决的这两个截然不同的平台上, 对基因组维护因素的招募可以用高能紫外线 (335-365 nm) 和如果25的组合来区分。配备此类激光器的显微镜成本高昂, 因为它们需要高能激光和专用紫外线–发射目标, 使它们远低于激光扫描共聚焦显微镜与405纳米激光的普及程度。线.在微辐照部位进行蛋白质的招募和交换的研究, 也被用来描述基因组维持因子的动态行为所需要的费力的人工图像分析所排除。

在这里, 我们表明, 对 BrdU 或 BBET 核酸染色的细胞进行预敏化, 然后用 405 nm 激光在共焦显微镜上进行微辐照, 可以监测 DNA 损伤基因组维持因子动态。使用伽玛 H2A X 或 RPA 复合子单元作为平台标记, 加上 z 堆叠, 以获得更大的景深和反褶积以提高分辨率, 使实验者能够区分当地招募到 DSBs 的因素, 从传播到早期病灶周围的大染色质域。这种分分类根据不同的核内隔间, 有助于改善 uncharacterized 蛋白的潜在作用, 招募到微辐照的网站。此外, 我们提供方便的协议和优化的管道, 以快速分析基因组维护因素的动态, 使用开放源码的软件斐济 (一个 ImageJ 分发)6,7,8。这些对目前微辐照方法的改进使对复员方案的研究在几乎任何实验室环境中都可能发生。

Protocol

1. 细胞的预敏化 24 h 在微辐照实验之前, 4万 U2OS 细胞每井在 1x DMEM 包含10% 个血清在8井养殖幻灯片与170µm 厚实盖玻片象玻璃或聚合物底部保证最大透射率405毫微米激光光和卓越的成像激光扫描倒置共焦显微镜。如果使用8井 microslide, 则可以使用500µL 的介质或解决方案, 为以后的所有处理和清洗该协议的步骤。注意: 由于其扁平的形态, 良好的粘附性和较大的细胞核, U2OS 细胞有助于检测在?…

Representative Results

在微辐照后, 根据基因组维护蛋白1、12的性质, 允许细胞在特定时间段内恢复。DSBs 将被核酸, 最广泛的过程中的 S 和 G2 阶段的细胞周期, 以创建一个有限的区域 ssDNA, 这是迅速覆盖的爱国军和其他基因组维护因素9。这个 ssDNA 地区四周都是染色质, 在复员方案期间进行了广泛的修改, 以管制其他复员方案因素的招?…

Discussion

使用上面概述的方法, 405 纳米激光微辐照的细胞预敏与 BBET 或 BrdU 允许局部生成 DNA 病变, 包括 DSBs 在细胞核内黏附人细胞。DDR 在这些 DSBs 的动力学类似于在真核细胞中生成的其他方法9,18,19。在微辐照部位进行的肿瘤切除术可导致 ssDNA 的产生, 可以采用 RPA32-targeting 抗体或 RPA32-GFP 融合。与染色质相关的因素, 另一方面, 可以定?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了加拿大自然科学和工程研究委员会 (5026 至 a. m) 和由来自癌症研究协会的下一代科学家奖学金 (21531 至 a. m) 的支持。我们感谢吉恩-弗朗索瓦 Lucier 为斐济 Python 脚本提供了卓越的质量控制, 并对统计分析提出了建议。我们感谢斯蒂芬妮博士 a Yazinski 的固定溶液配方。我们感谢保罗-朱利 Karsenti 的帮助与激光功率测量。

Materials

Olympus FLUOVIEW FV3000 resonant laser scanning confocal microscope Olympus
FluoView FV3000 software (version 2.1) Olympus
405 nm laser Coherent Radiation source
Microscope incubator AIO-UNO-OLYUS-1 Okolab OKO-UNO-1
60X /1.4 Objective Olympus Oil immersion objective
8-well culture slides on coverglass (X-well) Sarstedt 94.6190.802
U2OS osteosarcoma human cell line ATCC HTB-96 Stable cell lines 
4’,6-Diamidino-2-Phenylindole (DAPI) ThermoFisher D1306 Caution toxic
5-bromo-2′-deoxyuridine (BrdU)  Sigma-Aldrich 59-14-3
Paraformaldehyde Sigma-Aldrich 30525-89-4 Caution toxic
Bisbenzimide H 33342 (Hoechst 33342) ThermoFisher 62249
Bovine serum albumin (BSA) ThermoFisher BP1600-100
Trypsin EDTA 0.1%  ThermoFisher 15400-054
Triton X-100  BioShop TRX777.100
Tween-20  ThermoFisher BP337-500
Sucrose  BioShop SUC507
JetPRIME transfection reagent  Polyplus 114-07
ProLong Diamond Antifade mountant with DAPI  ThermoFisher P36962
DMEM 1X, + phenol red Wisent  319-005-CL
DMEM 1X, – phenol red Wisent 319-051-CL
Fetal bovine serum (FBS) Wisent  080-150
Mouse anti-RPA32 antibody Abcam ab2175 1:500 for IF
Rabbit anti-γ-H2A.X antibody Cell Signaling  9718S 1:500 for IF
Rabbit Anti-53BP1 antibody Cell Signaling  4937S 1:500 for IF
Rabbit Anti-PRP19 antibody Abcam ab27692 1:500 for IF
Goat anti-rabbit IgG Alexa Fluor 647 Cell Signaling  4414S 1:250 for IF
Goat anti-mouse  IgG Alexa Fluor 488  Cell Signaling  4408S 1:250 for IF
Fiji image analysis open-source software  https://fiji.sc
1918-K Power meter  with a 918D-SL-0D3 sensor Newport

References

  1. Ciccia, A., Elledge, S. J. The DNA damage response: making it safe to play with knives. Molecular cell. 40 (2), 179-204 (2010).
  2. Bekker-Jensen, S., et al. Spatial organization of the mammalian genome surveillance machinery in response to DNA strand breaks. The Journal of Cell Biology. 173 (2), 195-206 (2006).
  3. Limoli, A. C. L., Ward, J. F., May, N. A New Method for Introducing Double-Strand Breaks into Cellular DNA. Radiation Research. 134 (2), 160-169 (1993).
  4. Polo, S. E., Jackson, S. P. Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modifications. Genes & development. 25 (5), 409-433 (2011).
  5. Lukas, C., Falck, J., Bartkova, J., Bartek, J., Lukas, J. Distinct spatiotemporal dynamics of mammalian checkpoint regulators induced by DNA damage. Nature cell biology. 5 (3), 255-260 (2003).
  6. Schneider, C. A., Rasband, W. S., Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nature Methods. 9 (7), 671-675 (2012).
  7. Collins, T. J. ImageJ for microscopy. BioTechniques. 43 (1 Suppl), 25-30 (2007).
  8. Schindelin, J., et al. Fiji: an open-source platform for biological-image analysis. Nature methods. 9 (7), 676-682 (2012).
  9. Symington, L. S., Gautier, J. Double-strand break end resection and repair pathway choice. Annual review of genetics. 45, 247-271 (2011).
  10. Microirradiation Analysis Fiji Plugin. Available from: https://bitbucket.org/daniel_garneau/microirradiation_analysis/ (2017)
  11. Schindelin, J., et al. Fiji: an open-source platform for biological-image analysis. Nature Methods. 9 (7), 676-682 (2012).
  12. Izhar, L., et al. A Systematic Analysis of Factors Localized to Damaged Chromatin Reveals PARP-Dependent Recruitment of Transcription Factors. Cell Reports. 11 (9), 1-15 (2015).
  13. Panier, S., Boulton, S. J. Double-strand break repair: 53BP1 comes into focus. Nature Reviews Molecular Cell Biology. 15 (1), 7-18 (2013).
  14. Maréchal, A., et al. PRP19 Transforms into a Sensor of RPA-ssDNA after DNA Damage and Drives ATR Activation via a Ubiquitin-Mediated Circuitry. Molecular Cell. 53 (2), 235-246 (2014).
  15. Dubois, J. -. C., et al. A phosphorylation-and-ubiquitylation circuitry driving ATR activation and homologous recombination. Nucleic Acids Research. 45 (15), 8859-8872 (2017).
  16. Wan, L., Huang, J. The PSO4 Complex Associates with RPA and Modulates the Activation of ATR. The Journal of Biological Chemistry. 289 (10), 6619-6626 (2014).
  17. Abbas, M., Shanmugam, I., Bsaili, M., Hromas, R., Shaheen, M. The role of the human Psoralen 4 (hPso4) complex in replication stress and homologous recombination. The Journal of Biological Chemistry. 289 (20), 14009-14019 (2014).
  18. Chung, W. H., Zhu, Z., Papusha, A., Malkova, A., Ira, G. Defective resection at DNA double-strand breaks leads to de novo telomere formation and enhances gene targeting. PLoS Genetics. 6 (5), (2010).
  19. Hicks, W. W. M., Yamaguchi, M., Haber, J. E. Real-time analysis of double-strand DNA break repair by homologous recombination. Proceedings of the National Academy of Sciences of the United States of America. 108 (8), 3108-3115 (2011).
  20. Lackner, D. H., et al. A generic strategy for CRISPR-Cas9-mediated gene tagging. Nature Communications. 6, 10237 (2015).
  21. Ratz, M., Testa, I., Hell, S. W., Jakobs, S. CRISPR/Cas9-mediated endogenous protein tagging for RESOLFT super-resolution microscopy of living human cells. Scientific Reports. 5 (9592), (2015).
  22. Linkert, M., et al. Metadata matters: Access to image data in the real world. Journal of Cell Biology. 189 (5), 777-782 (2010).
  23. Dinant, C., et al. Activation of multiple DNA repair pathways by sub-nuclear damage induction methods. Journal of Cell Science. 120 (15), 2731-2740 (2007).
  24. Kong, X., et al. Comparative analysis of different laser systems to study cellular responses to DNA damage in mammalian cells. Nucleic Acids Research. 37 (9), e68 (2009).
  25. Holton, N. W., Andrews, J. F., Gassman, N. R. Application of Laser Micro-irradiation for Examination of Single and Double Strand Break Repair in Mammalian Cells. Journal of Visualized Experiments. (127), (2017).
  26. Thazhathveetil, A. K., Liu, S. T., Indig, F. E., Seidman, M. M. Psoralen conjugates for visualization of genomic interstrand cross-links localized by laser photoactivation. Bioconjugate Chemistry. 18 (2), 431-437 (2007).
  27. Mortusewicz, O., Amé, J. C., Schreiber, V., Leonhardt, H. Feedback-regulated poly(ADP-ribosyl)ation by PARP-1 is required for rapid response to DNA damage in living cells. Nucleic Acids Research. 35 (22), 7665-7675 (2007).
  28. Kleiner, R. E., Verma, P., Molloy, K. R., Chait, B. T., Kapoor, T. M. Chemical proteomics reveals a γH2AX-53BP1 interaction in the DNA damage response. Nature Chemical Biology. 11 (10), 807-814 (2015).
  29. Soultanakis, R. P., et al. Fluorescence detection of 8-oxoguanine in nuclear and mitochondrial DNA of cultured cells using a recombinant Fab and confocal scanning laser microscopy. Free Radical Biology and Medicine. 28 (6), 987-998 (2000).
check_url/57410?article_type=t

Play Video

Cite This Article
Gaudreau-Lapierre, A., Garneau, D., Djerir, B., Coulombe, F., Morin, T., Marechal, A. Investigation of Protein Recruitment to DNA Lesions Using 405 Nm Laser Micro-irradiation. J. Vis. Exp. (133), e57410, doi:10.3791/57410 (2018).

View Video