Summary

小鼠卵母细胞在减数分裂过程中对人类基因功能的评估

Published: April 10, 2018
doi:

Summary

随着与人类疾病相关的遗传变异开始显露出来, 开发系统以迅速评估那些被确定的变种的生物学意义变得越来越重要。本协议描述了在女性减数分裂过程中使用小鼠卵母细胞评估人类基因功能的方法。

Abstract

胚胎体检是人类不孕症的主要遗传原因。这些事件大多来源于女性减数分裂, 尽管与孕产妇年龄呈正相关, 但年龄并不总是预示着产生异倍体胚胎的风险。因此, 基因变体可能会解释在卵子发生过程期间染色体分离的错误。鉴于对人类卵母细胞的访问有限的研究目的, 通过一系列的分析, 以研究人类基因功能在减数分裂 I 使用小鼠卵母细胞。首先, 基因的信使 RNA (mRNA) 和感兴趣的基因变异被杏仁入前期 I 被拘捕的老鼠卵母细胞。在允许表达时间后, 卵母细胞被同步释放到减数分裂成熟完成减数分裂 i。通过用荧光记者的序列标记 mRNA, 如绿色荧光蛋白 (Gfp), 除了表型改变外, 还可以评估人体蛋白的定位。例如, 可以通过建立挑战基因产物来修复减数分裂错误的实验条件来调查功能的增益或丧失。虽然这一系统有利于在卵子发生过程期间对人体蛋白质功能进行调查, 但由于蛋白质表达不在内源性水平, 而且除非受控(即敲), 小鼠同系物也存在于系统中。

Introduction

不孕是影响10-15% 人口的生育年龄1的一个条件, 近半数的人寻求医疗治疗2。虽然不孕的病因是多种多样的, 在许多情况下多因素, 最常见的遗传异常的人是胚胎体检3。体检被定义为细胞中正确数目的染色体的偏差 (增益或损耗)。体检在人类胚胎中的现象是常见的, 并随着高级孕产妇年龄的增长而增加4,5。四项随机对照试验突出了仅选择染色体正常 (euploid) 胚胎进行子宫移植的好处, 因为这一策略导致植入率增加, 流产率降低, 并且缩短了实现怀孕6,7,8,9。因此, 了解人类体检的病因学对辅助生殖有重要意义。

虽然植入前的 aneuploidies 基因检测对不孕症治疗是有益的, 但对 aneuploidies 起源的深入了解仍然缺乏。人们普遍认为, 减数分裂 aneuploidies (起源于配子生产期间) 与孕产妇年龄呈正相关, 然而, 有些妇女呈现出与其特定年龄的平均率相差4的胚胎体检率。这些病例表明, 单独年龄并不总是预示着产生异倍体胚胎的风险。其他因素可能会在增加胚胎体检的风险方面发挥作用, 如基因变异。

在卵母细胞减数分裂过程中, 研究基因变异对体检的潜在贡献的一个关键方面是设计一个快速评价减数分裂基因功能的系统。由于道德约束和有限的访问, 使用人类卵子进行这些实验是不切实际的。这些问题可以通过使用小鼠卵母细胞来规避, 这里描述了在减数分裂过程中评估人类基因功能的一系列检测方法。通过 microinjecting 的信使 RNA (mRNA) 编码的基因变异, 在小鼠卵中的人蛋白的定位可以可视化, 并用于确定野生型和变异人蛋白的异位表达是否导致任何可能导致体检的表型改变。这些表型包括增加微管, 附加到不适当的修女动粒和无法支持染色体排列在中期的减数分裂 i. 重要的是, 这个协议可以用来调查的增益和损失的功能遗传变异通过建立特定的实验条件来挑战卵母细胞减数分裂的关键事件, 如纺锤体构建和染色体对齐10

Protocol

1. 分子克隆 获得感兴趣基因的全长编码序列和质粒体外转录 (pIVT) 向量11。注: 全长 cDNA 克隆可从各种供应商处获得, 也可通过反向转录聚合酶链反应 (RT PCR) 产生。国家生物技术信息中心 (NCBI) 在线资源提供核苷酸和表达序列标记 (EST) 数据库的基因转录序列。为了便于蛋白质可视化和表达水平分析, 克隆策略中可能需要融合到绿色荧光蛋白 (Gfp) 或其他合适?…

Representative Results

在体外转录高品质的 RNA 将有一个 A260/A280 比 (1.8-2.2) 和 A260/A230 比≥1.7 时使用分光光度计。图 1中的图片显示了在电泳后变性琼脂糖凝胶上体外产生的 RNA 的迁移。在图案中涂抹的带或具有多个尺寸波段的样本可以指示样品的污染或降解。另外, 多波段可能表明 mRNA 不是完全变性, 或起始质粒没有完全线性化。mrna 的运行比预测的要大, 因?…

Discussion

由于与疾病有关的人类遗传变异的快速和不断增加的识别, 必须建立系统来评估其生物学意义。了解人类减数分裂中的蛋白质功能会带来特殊的挑战, 因为人类卵母细胞是珍贵的, 稀有的, 人类的精子不能服从基因的操纵。小鼠卵母细胞是哺乳动物模型系统, 对评估人类减数分裂基因功能有价值10,23。这个模型绕过了使用人类卵子的不切实际之处, 同时提供…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了来自美国生殖医学协会的研究补助金, 以及来自罗格斯大学的查尔斯和乔安娜. 布希纪念基金的支持, 新泽西州的 k.s.a. L.N. 得到了美国 (F31 HD0989597) 的资助。

Materials

0.2 mL Seal-Rite PCR tube USA Scientific 1602-4300
1 kb DNA Ladder Thermo Scientific SM0313
100 bp DNA Ladder Thermo Scientific SM0243
6X DNA loading Dye Thermo Scientific R0611
9-well glass spot plate Thomas Scientific 7812G17
Agarose Sigma Aldrich A9539
Albumin from bovine serum  Sigma-Aldrich A3294 
Alexa-fluor-568 conjugated anti-mouse IgG Thermo Scientific A21050 1:200 dilution
Alexa-fluor-633 conjugated anti-human IgG Thermo Scientific A21091 1:200 dilution
Ampicillin VWR AA0356
Anti-vibration table Technical Manufacturing Corp any standard model
Anti-Acetylated Tubulin antibody Sigma Aldrich T7451 1:100 diution
Anti-centromeric (CREST) antibody Antibodies Incorportated 15-234 1:30 dilution 
Barrier (Filter) Pipette tips Thermo Scientific AM12635 Make sure compatable with your brand of pipettors. These are compatible with Eppendorf brand pipettors. 
BD Difco Dehydrated Culture Media: LB Agar, Miller (Luria Bertani) Fisher Scientific DF0445-07-6
BD Difco Dehydrated Culture Media: LB Broth, Miller (Luria Bertani) Fisher Scientific DF0446-07-5
Capillary tubing Sutter B100-75-10
Center Well organ culture dish VWR 25381-141
CO2 tank For incubator
Confocal microscope Zeiss any standard model
Centrifuge (With cooling ability) Thomas Scientific any standard model 
Cover Glass 11 x 22 mm Thomas Scientific 6663F10
Coverslips Thomas Scientific 6663-F10 thickness will vary for particular microscopes
DAPI Sigma Aldrich D9542
DEPC H20 Life Technologies AM9922
Digital Dry Bath Thermo Scientific 888700001
Easy A high fidelity cloning enzyme Agilent 600400 For DNA cloning 
Enzymes for linearizing pIVT New England Biolabs NdeI or KasI can be used
Ethidium Bromide Thermo Scientific 155585011
Fluorescent Microscope  Any Fluorescent microscope may be used
Formaldehyde (37%) Thermo Fisher Scientifc 9311
Formaldehyde RNA loading dye Ambion 8552
Frosted Microscope Slides (Uncharged) 25X75 mm Fisher Scientific 12-544-3
Full Length cDNA Clones Can be obtained from any vendor that supplies open reading frame clones
Gel electrophoresis apparatus Bio-Rad any standard model
Glass Pasteur Pipets Fisher Scientific 13-678-200
Globin Forward Primer for pIVT Construct 5'- GAA GCT CAG AAT AAA CGC -3'.  Can be purchased from any company that generates custom oligonucelotides
Globin Reverse Primer for pIVT Construct 5'- ATT CGG GTG TTC TTG AGG CTG G -3' Can be purchased from any company that generates custom oligonucelotides
Holding pipettes Eppendorf 930001015 Vacutip
Humidified Chamber Tupperware can be used
Illustra Ready-To-Go RT-PCR beads GE Life Sciences 27925901
Incubator any standard model with CO2 and water jacketed technology
Inverted Microscope Nikon instruments Any Standard model
Image J (NIH) Software NIH Image Analysis software
Lid of 96 well plate Nalgene Nunc International 263339
Low Adhesion 0.5 mL microcentrifgue tube USA Scientific 1405-2600
MacVector  MacVector Sequence analysis software
MG132 Selleckchem S2619
Microscope slides Fisher Scientific 12-544-3 
Millenium RNA Markers-Formaldehyde  Ambion AM7151
Milrinone Sigma-Aldrich M4659 Resuspend in DMSO at 2.5mM
Mineral Oil Sigma-Aldrich M5310 Only used embryo-tested, sterile-filtered
Monastrol Sigma-Aldrich M8515 Resuspend in DMSO at 100 mM
Mouthpiece Biodiseno MP-001-Y
N2 tank for antivibration table
Nail Polish; Clear Any clear nailpolish can be used
NanoDrop Microvolume UV-Vis Spectrophotometer Thermo Scientific any standard model
NorthernMax 10X Denaturing Gel Buffer Life Technologies AM8676
NorthernMax 10X Running buffer Life Technologies AM8671
NuPAGE MOPS SDS Running buffer Thermo Scnentific NP0001
Organ Culture Dish 60x15mm Life Technologies 08-772-12
Paraformaldehyde Polysciences, Inc.  577773
PCR Thermal Cycler Thermo Fisher Scientific 4484075
Petri Dish 139 mm Thermo Fisher Scientifc 501V
Petri dish 35 mm Thermo Fisher Scientifc 121V
Petri Dish 60 mm Falcon BD 351007
Picoinjector XenoWorks Digital Microinjector any standard model
Pipette puller Flaming-Brown Micropipette puller Model P-1000
pIVT plasmid AddGene 32374 Empty vector suitable for oocyte expression.
Pregnant Mare Serum Gonadotropin Lee BioSolutions 493-10
QIAprep Spin Miniprep Kit Qiagen 27104 purification of up to 20 uL of plasmid DNA
QIAquick PCR purification kit Qiagen 28104
Quikchange II site directed mutagenesis kit Agilent  200523 mutagenesis kit for insertions and deletions
Quikchange lightning multi-site directed mutagenesis kit Agilent  210512 mutagenesis kit for single site changes
Scissors (Fine point) Fine science tools 14393
Scissors (Medium point) Fine science tools WP114225
Seal-Rite 1.5 mL microcentrifuge tube USA Scientific 1615-5500
Slide Warmer any standard model
Spectrophotometer (Nanodrop) Thermo Fisher Scientific ND-ONE-W
Stereomicroscope any standard model
Subcloning Efficiency DH5a Competent Cells Thermo Fisher Scientifc 18265017
Syringe BD Bioscienes 309623 1 ml, 27G(1/2)
T4 DNA Ligase New England Biolabs M0202L
T7 mMessage Machine high-yield capped RNA transcription kit Life Technologies AM1340
TritonX-100 Sigma-Aldrich x-100
Tween-20 Sigma-Aldrich 274348
Tweezer (Fine point- Size 5) Fine science tools SN.743.12.1
UltraPure Dnase/Rnase-Free Distilled Water Thermo Fisher Scientifc 10977015
UltraPure Ethidium Bromide 10mg/mL Thermo Fisher Scientifc 15585011
UVP UV/White lite transilluminator Fisher Scientific UV95041501
Vectashield Mounting Medium Vector Laboratories H-1000

References

  1. Thoma, M. E., et al. Prevalence of infertility in the United States as estimated by the current duration approach and a traditional constructed approach. Fertil Steril. 99 (5), 1324-1331 (2013).
  2. Boivin, J., Bunting, L., Collins, J. A., Nygren, K. G. International estimates of infertility prevalence and treatment-seeking: potential need and demand for infertility medical care. Human Reproduction. 22 (6), 1506-1512 (2007).
  3. Treff, N. R., Zimmerman, R. S. Advances in Preimplantation Genetic Testing for Monogenic Disease and Aneuploidy. Annu Rev Genomics Hum Genet. , (2017).
  4. Franasiak, J. M., et al. The nature of aneuploidy with increasing age of the female partner: a review of 15,169 consecutive trophectoderm biopsies evaluated with comprehensive chromosomal screening. Fertil Steril. 101 (3), 656-663 (2014).
  5. Hassold, T., Hunt, P. To err (meiotically) is human: the genesis of human aneuploidy. Nat Rev Genet. 2 (4), 280-291 (2001).
  6. Scott, R. T. Blastocyst biopsy with comprehensive chromosome screening and fresh embryo transfer significantly increases in vitro fertilization implantation and delivery rates: a randomized controlled trial. Fertil Steril. 100 (3), 697-703 (2013).
  7. Scott, R. T., Upham, K. M., Forman, E. J., Zhao, T., Treff, N. R. Cleavage-stage biopsy significantly impairs human embryonic implantation potential while blastocyst biopsy does not: a randomized and paired clinical trial. Fertil Steril. 100 (3), 624-630 (2013).
  8. Yang, Z., et al. Selection of single blastocysts for fresh transfer via standard morphology assessment alone and with array CGH for good prognosis IVF patients: results from a randomized pilot study. Mol Cytogenet. 5 (1), 24 (2012).
  9. Rubio, C., et al. In vitro fertilization with preimplantation genetic diagnosis for aneuploidies in advanced maternal age: a randomized, controlled study. Fertil Steril. 107 (5), 1122-1129 (2017).
  10. Nguyen, A. L., et al. Identification and characterization of Aurora Kinase B and C variants associated with maternal aneuploidy. Mol Hum Reprod. , (2017).
  11. Igarashi, H., Knott, J. G., Schultz, R. M., Williams, C. J. Alterations of PLCbeta1 in mouse eggs change calcium oscillatory behavior following fertilization. Dev Biol. 312 (1), 321-330 (2007).
  12. Database, J. S. E. Basic Methods in Cellular and Molecular Biology. Molecular Cloning. JoVE. , (2017).
  13. Carey, M. F., Peterson, C. L., Smale, S. T. PCR-mediated site-directed mutagenesis. Cold Spring Harb Protoc. 2013 (8), 738-742 (2013).
  14. Armstrong, J. A., Schulz, J. R. . Current Protocols Essential Laboratory Techniques. , (2008).
  15. Stein, P., Schindler, K. Mouse oocyte microinjection, maturation and ploidy assessment. J Vis Exp. (53), (2011).
  16. Watanabe, Y. Geometry and force behind kinetochore orientation: lessons from meiosis. Nat Rev Mol Cell Biol. 13 (6), 370-382 (2012).
  17. Shuda, K., Schindler, K., Ma, J., Schultz, R. M., Donovan, P. J. Aurora kinase B modulates chromosome alignment in mouse oocytes. Mol Reprod Dev. 76 (11), 1094-1105 (2009).
  18. Lane, S. I., Yun, Y., Jones, K. T. Timing of anaphase-promoting complex activation in mouse oocytes is predicted by microtubule-kinetochore attachment but not by bivalent alignment or tension. Development. 139 (11), 1947-1955 (2012).
  19. Nguyen, A. L., et al. Phosphorylation of threonine 3 on histone H3 by haspin kinase is required for meiosis I in mouse oocytes. J Cell Sci. 127 (Pt 23), 5066-5078 (2014).
  20. Tsafriri, A., Chun, S. Y., Zhang, R., Hsueh, A. J., Conti, M. Oocyte maturation involves compartmentalization and opposing changes of cAMP levels in follicular somatic and germ cells: studies using selective phosphodiesterase inhibitors. Dev Biol. 178 (2), 393-402 (1996).
  21. Kapoor, T. M., Mayer, T. U., Coughlin, M. L., Mitchison, T. J. Probing spindle assembly mechanisms with monastrol, a small molecule inhibitor of the mitotic kinesin, Eg5. Eg5. J Cell Biol. 150 (5), 975-988 (2000).
  22. Jones, K. T., Lane, S. I. Molecular causes of aneuploidy in mammalian eggs. Development. 140 (18), 3719-3730 (2013).
  23. Fellmeth, J. E., et al. Expression and characterization of three Aurora kinase C splice variants found in human oocytes. Mol Hum Reprod. 21 (8), 633-644 (2015).
  24. Rieder, C. L. The structure of the cold-stable kinetochore fiber in metaphase PtK1 cells. Chromosoma. 84 (1), 145-158 (1981).
  25. Brunet, S., et al. Kinetochore fibers are not involved in the formation of the first meiotic spindle in mouse oocytes, but control the exit from the first meiotic M phase. J Cell Biol. 146 (1), 1-12 (1999).
  26. Joung, J., et al. Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening. Nat Protoc. 12 (4), 828-863 (2017).
  27. Cong, L., et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 339 (6121), 819-823 (2013).

Play Video

Cite This Article
Marin, D., Nguyen, A. L., Scott, Jr., R. T., Schindler, K. Using Mouse Oocytes to Assess Human Gene Function During Meiosis I. J. Vis. Exp. (134), e57442, doi:10.3791/57442 (2018).

View Video