Summary

人卵巢组织与工程化内皮细胞联合移植: 一种以细胞为基础的快速灌注与直接分泌的融合策略

Published: May 16, 2018
doi:

Summary

对某些患者来说, 保留生育能力的唯一选择是保存卵巢组织。不幸的是, 延迟血管重建破坏卵泡活力。在这里, 我们提出一个协议, 共同移植人卵巢组织与内皮细胞作为一种基于细胞的战略结合加速灌注与直接分泌交付的生物活性分子。

Abstract

不孕是化疗和/或放疗的经常性副作用, 对某些患者来说, 冷冻的卵母细胞或胚胎不是一种选择。作为替代, 越来越多的这些患者选择 cryopreserve 卵巢组织的移植后恢复和缓解。尽管保存的卵巢组织自动移植患者的预后有所改善, 但移植组织的有效血管重建仍然是一个主要障碍。为了减轻缺血, 从而改善自动移植患者的预后, 我们开发了一种以血管细胞为基础的加速卵巢组织灌注的策略。本文描述了一种在小鼠同种异体模型中联合移植保存卵巢组织的外源性内皮细胞 (执行官) 的方法。我们扩大这一做法, 雇用已设计为组成性表达抗苗勒激素 (AMH) 的执行官, 从而使持续分泌信号输入到卵巢移植。联合移植与执行官增加卵泡体积和改善窦卵泡发育, 和 AMH 表达的执行官促进保留静态原始卵泡。这一联合战略可能是一个有用的工具, 以减轻缺血和调节卵泡激活的背景下的生育率保存和/或不育的大。

Introduction

癌症仍然是发达国家死亡的主要原因之一, 但数十年的研究已经取得了重大进展, 在大多数类型的癌症, 并在某些情况下, 几乎加倍的生存率1。不幸的是, 化疗药物经常 gonadotoxic, 耗尽卵巢原始卵泡的储备, 并减少生育率2。这种日益增长的人口可以受益于多种生育方法, 包括卵母细胞和/或胚胎超低温保存, 但是, 需要迅速启动癌症治疗和青春期前患者的患者不符合这些选择。另外, 一些患者选择在进行治疗方案之前 cryopreserve 卵巢组织, 并在恢复和缓解后, 自动移植组织恢复生育率3。然而, 到目前为止, 自动移植后的移植生存和卵泡输出仍然相对较低4, 主要是由于组织缺血和缺氧5,6,7。尽管许多努力改善卵巢皮质移植的生存能力使用抗氧化剂8,9, 支持血管生成素10,11,12,1 3或机械操作14, 5 至7天窗口移植后的移植物缺血损害了移植7的生存和生存。为了解决这一问题, 我们制定了一个基于细胞的策略, 以促进宿主和移植血管的吻合, 从而加速卵巢组织的再灌注。

除了在移植后的窗口中对接枝卵巢组织的缺血性侮辱外, 卵泡间信号的中断可能导致池的耗尽15,16。由于外源性内皮细胞 (执行官) 有助于在移植周围的稳定和功能的血管, 他们提供了一个独特的机会, 向移植组织传达定义的分子输入。作为一项原则的证明, 执行官们被设计来表达超生理水平的抗苗勒激素 (AMH), 一个成员的转化生长因子 beta (TGFβ) 超家族, 已被证明限制卵泡生长17。用控制和 AMH 表达细胞联合移植移植滤泡分布的比较验证了工程主管的生物活性和效力。

总之, 通过提高移植的生存能力和抑制卵泡池的过早动员, 这种方法可以提高在生育保护患者中自动移植卵巢组织的生产率。此外, 基于 ExEC 的平台还能对与卵泡发育有关的分子调控器进行实验性审讯。

Protocol

所有涉及动物的程序都已由威尔康奈尔医学院的机构动物护理和使用委员会 (IACUC) 批准。所有使用卵巢组织的异种移植实验均按照相关的指导原则和规定进行。人卵巢组织收集的病人计划化疗或放疗的癌症治疗或前骨髓移植。威尔康奈尔医学院的机构审查委员会批准了为潜在自体使用的组织的收集, 并在患者知情同意下, 捐赠多达10% 的卵巢组织供研究使用。 1. 人类卵巢组织的?…

Representative Results

为了确定联合移植的执行官是否为患者的组织提供了好处, 解冻后的卵巢皮质带被分成同等大小的部分, 并嫁接为免疫性损害, 点头, 伽玛 (核供应), 小鼠。在单独嵌入纤维蛋白血块 (无 ECs) 和其他包含执行官 (图 1a) 的一侧, 每只鼠标都充当自己的控制项。执行官是通过从人脐带分离的原发性内皮和随后的治疗与腺病毒基因片段 E4-ORF1, 如前所述<sup class="…

Discussion

在这里我们证明, 联合移植的执行官提供了一个重要的好处, 卵巢组织的生存能力和功能后, 移植的小鼠。未设置卵巢组织自动移植的临床应用标准和最佳参数 (大小, 移植部位, 移植时间,)。32,33,34对于滤泡池的增强恢复仍未定义。当进行自动移植时, 解冻皮层卵巢组织的缺血性移植主要表现在骨盆部位, 如其余的卵巢、?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

奥马尔. 亚历山大的人为例证。
L.M. 获得了康奈尔临床和翻译科学中心的试验奖和 ASRM 研究补助金的支持。
作者感谢詹姆斯实验室成员对手稿的批判性阅读。

Materials

Leibovitz’s L-15 medium Gibco 11415064
Antibiotic-Antimycotic Gibco 15240062 Anti-Anti X100
Sucrose Sigma S 1888
Fibrinogen Sigma F 8630 from bovine plasma
Thrombin Sigma T 1063 from human plasma
DMSO Sigma D 2650
DMEM Gibco 12491015
Enzyme Cell Detachment Medium Invitrogen 00-4555-56 Accutase
Plastic paraffin film Bemis NA Parafilm M
Surgical paper tape 2.5 cm 3M 1530-1 Micropore
Surgical Paper tape 1.25 cm 3M 1530-0 Micropore
Perforated plastic Surgical tape 1.25 cm 3M 1527-0 Transpore
Monofilament Absorbable Suture Covidien UM-203 Biosyn
Braided Absorbable Suture Covidien GL-889 Polysorb
Povidone-iodine Solution USP 10% Purdue Products 67618-153-01 Betadine Solution Swab Stick
Cryoviales Nunc 377267 CryoTube
sterile ocular lubricant Dechra 17033-211-38 Puralube
1.7 ml micro-centrifuge tube Denville C-2172 Eppendorf
Anasthesia system VetEquip V-1 table top system with scavenging
Endothelial cells Angiocrine Biosciences, Inc., San Diego, CA, USA Isolated, transfected with E4-ORF- 1 and labeled endothelial cells
Trichrome stain Sigma HT15-1kt Trichrome Stain (Masson) Kit
Isolectin Invitrogen I32450 isolectin GS-IB4 From Griffonia simplicifolia, Alexa Fluor™ 647 Conjugate

References

  1. Siegel, R. L., Miller, K. D., Jemal, A. Cancer Statistics, 2017. CA Cancer J Clin. 67 (1), 7-30 (2017).
  2. Magelssen, H., Melve, K. K., Skjaerven, R., Fossa, S. D. Parenthood probability and pregnancy outcome in patients with a cancer diagnosis during adolescence and young adulthood. Hum Reprod. 23 (1), 178-186 (2008).
  3. Donnez, J., Dolmans, M. M., Diaz, C., Pellicer, A. Ovarian cortex transplantation: time to move on from experimental studies to open clinical application. Fertil Steril. 104 (5), 1097-1098 (2015).
  4. Stoop, D., Cobo, A., Silber, S. Fertility preservation for age-related fertility decline. Lancet. 384 (9950), 1311-1319 (2014).
  5. Aubard, Y., et al. Orthotopic and heterotopic autografts of frozen-thawed ovarian cortex in sheep. Hum Reprod. 14 (8), 2149-2154 (1999).
  6. Newton, H., Aubard, Y., Rutherford, A., Sharma, V., Gosden, R. Low temperature storage and grafting of human ovarian tissue. Hum Reprod. 11 (7), 1487-1491 (1996).
  7. Van Eyck, A. S., et al. Electron paramagnetic resonance as a tool to evaluate human ovarian tissue reoxygenation after xenografting. Fertil Steril. 92 (1), 374-381 (2009).
  8. Nugent, D., Newton, H., Gallivan, L., Gosden, R. G. Protective effect of vitamin E on ischaemia-reperfusion injury in ovarian grafts. J Reprod Fertil. 114 (2), 341-346 (1998).
  9. Kim, S. S., et al. Quantitative assessment of ischemic tissue damage in ovarian cortical tissue with or without antioxidant (ascorbic acid) treatment. Fertil Steril. 82 (3), 679-685 (2004).
  10. Abir, R., et al. Improving posttransplantation survival of human ovarian tissue by treating the host and graft. Fertil Steril. 95 (4), 1205-1210 (2011).
  11. Friedman, O., et al. Possible improvements in human ovarian grafting by various host and graft treatments. Hum Reprod. 27 (2), 474-482 (2012).
  12. Shikanov, A., et al. Fibrin encapsulation and vascular endothelial growth factor delivery promotes ovarian graft survival in mice. Tissue Eng Part A. 17 (23-24), 3095-3104 (2011).
  13. Soleimani, R., Heytens, E., Oktay, K. Enhancement of neoangiogenesis and follicle survival by sphingosine-1-phosphate in human ovarian tissue xenotransplants. PLoS One. 6 (4), e19475 (2011).
  14. Israely, T., Dafni, H., Nevo, N., Tsafriri, A., Neeman, M. Angiogenesis in ectopic ovarian xenotransplantation: multiparameter characterization of the neovasculature by dynamic contrast-enhanced MRI. Magn Reson Med. 52 (4), 741-750 (2004).
  15. Buratini, J., Price, C. A. Follicular somatic cell factors and follicle development. Reprod Fertil Dev. 23 (1), 32-39 (2011).
  16. Dunlop, C. E., Anderson, R. A. The regulation and assessment of follicular growth. Scand J Clin Lab Invest Suppl. 244, 13-17 (2014).
  17. Durlinger, A. L., et al. Control of primordial follicle recruitment by anti-Müllerian hormone in the mouse ovary. Endocrinology. 140 (12), 5789-5796 (1999).
  18. Schmidt, K. L., Ernst, E., Byskov, A. G., Nyboe Andersen, A., Yding Andersen, C. Survival of primordial follicles following prolonged transportation of ovarian tissue prior to cryopreservation. Hum Reprod. 18 (12), 2654-2659 (2003).
  19. Jensen, A. K., et al. Outcomes of transplantations of cryopreserved ovarian tissue to 41 women in Denmark. Hum Reprod. 30 (12), 2838-2845 (2015).
  20. Oktay, K., Newton, H., Aubard, Y., Salha, O., Gosden, R. G. Cryopreservation of immature human oocytes and ovarian tissue: an emerging technology?. Fertil Steril. 69 (1), 1-7 (1998).
  21. Shultz, L. D., et al. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. J Immunol. 174 (10), 6477-6489 (2005).
  22. Ramalingam, R., Rafii, S., Worgall, S., Brough, D. E., Crystal, R. G. E1(-)E4(+) adenoviral gene transfer vectors function as a "pro-life" signal to promote survival of primary human endothelial cells. Blood. 93 (9), 2936-2944 (1999).
  23. Seandel, M., et al. Generation of a functional and durable vascular niche by the adenoviral E4ORF1 gene. Proc Natl Acad Sci U S A. 105 (49), 19288-19293 (2008).
  24. Meirow, D., et al. Cortical fibrosis and blood-vessels damage in human ovaries exposed to chemotherapy. Potential mechanisms of ovarian injury. Hum Reprod. 22 (6), 1626-1633 (2007).
  25. Assidi, M., et al. Identification of potential markers of oocyte competence expressed in bovine cumulus cells matured with follicle-stimulating hormone and/or phorbol myristate acetate in vitro. Biol Reprod. 79 (2), 209-222 (2008).
  26. Thakur, S. C., Datta, K. Higher expression of hyaluronan binding protein 1 (HABP1/p32/gC1qR/SF2) during follicular development and cumulus oocyte complex maturation in rat. Mol Reprod Dev. 75 (3), 429-438 (2008).
  27. Dolmans, M. M., et al. Short-term transplantation of isolated human ovarian follicles and cortical tissue into nude mice. Reproduction. 134 (2), 253-262 (2007).
  28. Amorim, C. A., et al. Impact of freezing and thawing of human ovarian tissue on follicular growth after long-term xenotransplantation. J Assist Reprod Genet. 28 (12), 1157-1165 (2011).
  29. Kawamura, K., et al. Hippo signaling disruption and Akt stimulation of ovarian follicles for infertility treatment. Proc Natl Acad Sci U S A. 110 (43), 17474-17479 (2013).
  30. Suzuki, N., et al. Successful fertility preservation following ovarian tissue vitrification in patients with primary ovarian insufficiency. Hum Reprod. 30 (3), 608-615 (2015).
  31. Campbell, B. K., Clinton, M., Webb, R. The role of anti-Müllerian hormone (AMH) during follicle development in a monovulatory species (sheep). Endocrinology. 153 (9), 4533-4543 (2012).
  32. Donnez, J., et al. Restoration of ovarian activity and pregnancy after transplantation of cryopreserved ovarian tissue: a review of 60 cases of reimplantation. Fertil Steril. 99 (6), 1503-1513 (2013).
  33. Ferreira, M., et al. The effects of sample size on the outcome of ovarian tissue cryopreservation. Reprod Domest Anim. 45 (1), 99-102 (2010).
  34. Gavish, Z., Peer, G., Roness, H., Cohen, Y., Meirow, D. Follicle activation and ‘burn-out’ contribute to post-transplantation follicle loss in ovarian tissue grafts: the effect of graft thickness. Hum Reprod. 30 (4), 1003 (2015).
  35. Donnez, J., Dolmans, M. M. Fertility Preservation in Women. N Engl J Med. 377 (17), 1657-1665 (2017).
  36. Salama, M., Woodruff, T. K. New advances in ovarian autotransplantation to restore fertility in cancer patients. Cancer Metastasis Rev. 34 (4), 807-822 (2015).
  37. Donnez, J., Dolmans, M. M. Ovarian cortex transplantation: 60 reported live births brings the success and worldwide expansion of the technique towards routine clinical practice. J Assist Reprod Genet. 32 (8), 1167-1170 (2015).
  38. Meirow, D., et al. Transplantations of frozen-thawed ovarian tissue demonstrate high reproductive performance and the need to revise restrictive criteria. Fertil Steril. 106 (2), 467-474 (2016).
  39. Kalich-Philosoph, L., et al. Cyclophosphamide triggers follicle activation and “burnout”; AS101 prevents follicle loss and preserves fertility. Sci Transl Med. 5 (185), 185ra162 (2013).
  40. Kano, M., et al. AMH/MIS as a contraceptive that protects the ovarian reserve during chemotherapy. Proc Natl Acad Sci U S A. 114 (9), E1688-E1697 (2017).
check_url/57472?article_type=t

Play Video

Cite This Article
Man, L., Park, L., Bodine, R., Ginsberg, M., Zaninovic, N., Schattman, G., Schwartz, R. E., Rosenwaks, Z., James, D. Co-transplantation of Human Ovarian Tissue with Engineered Endothelial Cells: A Cell-based Strategy Combining Accelerated Perfusion with Direct Paracrine Delivery. J. Vis. Exp. (135), e57472, doi:10.3791/57472 (2018).

View Video