Summary

巨噬细胞内细胞内生长的定量化是评价利什曼原虫寄生虫毒力的快速可靠方法

Published: March 16, 2018
doi:

Summary

所有致病性的利什曼原虫物种在其脊椎动物宿主的巨噬细胞内栖息和复制。在这里, 我们提出了一个协议, 以感染小鼠骨髓源性巨噬细胞的文化与利什曼原虫, 然后精确定量的细胞内生长动力学。该方法对于研究影响寄主病原体相互作用和利什曼原虫毒力的个体因素非常有用。

Abstract

利什曼原虫的生命周期, 利什曼病的致病剂, 分别在昆虫和脊椎动物寄主 promastigote 和 amastigote 阶段交替。虽然利什曼病的致病症状可能有很大差异, 从良性皮肤病变到高度致命的内脏疾病的形式取决于感染的物种, 所有的利什曼原虫物种驻留在宿主巨噬细胞在脊椎动物阶段他们的生命周期。因此,利什曼原虫传染性直接关系到它在巨噬细胞内 parasitophorous 泡 (PVs) 中侵入、生存和复制的能力。因此, 评估寄生虫复制 intracellularly 的能力是确定毒力的可靠方法。研究利什曼病的发展使用动物模型是费时, 繁琐, 往往是困难的, 特别是与 pathogenically 重要的内脏形式。我们这里描述了一个方法来遵循的细胞内发育的利什曼原虫骨髓源性巨噬细胞 (BMMs)。细胞内寄生虫的数量是确定的24小时间隔为 72-96 h 继感染后。这种方法可以可靠地确定各种遗传因素对利什曼原虫毒力的影响。举例来说, 我们展示了单个等位基因删除利什曼原虫线粒体铁转运基因 (LMIT1) 如何削弱利什曼原虫 amazonensis突变株LMIT1/ΔLmit1在 BMMs 内生长的能力,反映了与野生型相比, 毒力的急剧减少。这种检测还允许精确控制实验条件, 可以单独操作, 分析各种因素 (营养素、活性氧种类、等等) 对寄主-病原体相互作用的影响。因此, 适当的执行和量化的法钢公司感染研究提供了一个非侵入性, 快速, 经济, 安全和可靠的替代传统动物模型研究。

Introduction

利什曼病是指由利什曼原虫属的原虫寄生种类引起的广泛的人类疾病。目前约有1200万人感染了全球范围内的利什曼原虫, 3.5亿多名患者面临风险。疾病病理学依赖于利什曼原虫物种和寄主因素, 症状不同于无害的自我愈合皮肤病变和致命的 visceralizing 形式。如果未经治疗, 内脏利什曼病是致命的, 只有在疟疾后才会成为感染了原生动物寄生虫的最致命的人类疾病1。尽管疾病病理和症状存在广泛的差异, 但所有的利什曼原虫物种分别在昆虫和脊椎动物寄主的 promastigote 和 amastigote 阶段之间有 digenic 的生命周期交替。在脊椎动物体内,利什曼原虫目标宿主巨噬细胞侵入, 并诱导 parasitophorous 液泡 (PVs) 的形成, 酸性隔层具有高度剧毒 amastigote 形态复制的 phagolysosomes 特性。Amastigotes 持续在宿主组织中的慢性感染, 可以传递到未感染的白蛉, 完成传输周期。因此, 在人类疾病发展的背景下, amastigotes 是最重要的利什曼原虫生命周期表单2。调查 amastigotes 如何在巨噬细胞 PVs 中复制对于了解利什曼原虫毒力3,4,5,6,7和新的有效疗法的发展。

我们在这里描述了我们的实验室经常使用的方法来研究在骨髓源巨噬细胞 (BMMs) 中的利什曼原虫感染和复制, 这涉及到定量评估细胞内的利什曼原虫的数量随着时间的推移。该过程包括从小鼠骨髓中获取单核细胞和分化为培养的巨噬细胞,体外感染与感染型 (metacyclic 前鞭毛体或 amastigotes)利什曼原虫和量化的每隔24小时胞内寄生虫的数量在感染后 72-96 小时内。本试验已在实验室中使用, 以确定几种环境因素和寄生虫基因的影响, 包括鉴定铁在促进L. amazonensis毒力方面的关键作用, 进一步验证了都安小鼠病变发育研究6,8,9,10,11,12,13,14,15.由于所有致病性的利什曼原虫物种都在宿主巨噬细胞内建立了它们的复制利基, 这种检测方法可普遍用于所有利什曼原虫物种的毒力测定。

执行法钢公司感染可以分析单个细胞层面上的寄主寄生虫相互作用, 从而更广泛地了解利什曼原虫寄生虫如何与他们的首选宿主微环境、巨噬细胞的 PVs 相互作用。巨噬细胞感染化验已成功使用多个组16,17,18,19,20,21,22 , 探索宿主巨噬细胞和利什曼原虫特定基因的功能, 以及它们在细胞内感染的复杂相互作用中的潜在参与。法钢公司感染允许将寄生虫生长量量化为对影响细胞内生存的宿主因素的影响的读出, 如杀菌剂一氧化氮生产、产生活性氧种类和其他不利条件在溶酶体样 PVs23中遇到。巨噬细胞感染的检测也被用来识别潜在的抗 leishmanial 药物治疗发展的线索13,24

法钢公司感染体外性质比其他评估利什曼原虫毒力的方法具有多种优势。然而, 以前的几项研究表明, 随着时间的推移, 细胞内寄生虫存活的机制并没有量化感染率为20,21,24。此外, 许多研究侧重于以下的体内感染随着时间的推移, 通过测量皮肤病变大小和其他生理症状只是间接相关的寄生虫复制25,26,27.体内感染是一种严格的评估寄生虫毒力的方法, 但仅基于都安肿胀的病变大小测量往往是不够的, 因为它们反映了感染组织的炎症反应, 而不是寄生虫的绝对数量。因此, 都安病变的发展化验必须遵循量化的寄生虫负荷的感染组织, 这一程序需要冗长的限制稀释化验28。此外,体内研究通常涉及在不同时间点牺牲多个动物以提取感兴趣的组织6,8,9,10,11,13. 相比之下, 大量的 BMMs 可以从一只动物身上获得, 这些细胞可以在允许在不同时间点对感染进行评估的条件下进行镀膜。此外, 与体内研究相比, 执行体外法钢公司感染可以更好地控制实验条件。量化的巨噬细胞感染与寄生虫本身允许精确控制感染的多样性 (语言) 和文化条件。对这些因素的精细控制是识别离散细胞通路特征和了解它们对感染过程的影响的关键。

考虑到这些优势, 对于研究利什曼原虫毒力的少数群体迄今充分利用细胞内复制的定量评估, 这一点令人吃惊。在本文中, 我们讨论了可能妨碍更广泛地利用此检测的常见缺陷, 并提供了一步一步的协议, 以促进其适当的实施。考虑到它的精确性和通用性, 我们在这里描述的法钢公司感染检测方法不仅可以用来探索影响利什曼原虫毒力的寄主病原体相互作用, 而且还能研究在体内复制的其他微生物。巨噬细胞29。重要的是, 这种检测也可以作为一种快速、经济的临床前筛选方法, 用于抗 leishmanial 药物的开发。

Protocol

所有的实验程序都是按照《国家卫生研究院护理和使用实验动物指南》的建议进行的, 并得到马里兰大学 IACUC 的批准。1至4节所述的所有步骤都应在生物层流柜内灌装进行。应使用个人保护, 在处理所有试验阶段的活的利什曼原虫寄生虫时应谨慎行事。 1. 骨髓源巨噬细胞的分离和分化 (BMMs)8,30,31 …

Representative Results

利什曼原虫有两种受感染的窗体-metacyclic 前鞭毛体, 它们区别于区域性的固定阶段的 procyclic 前鞭毛体, amastigotes 是胞内阶段(图 1)。在某些利什曼原虫种 (如L. amazonensis) 中, amastigotes 也可以通过将 promastigote 细胞转移到较低的 pH 值 (4.5) 和高温 (32 °c), 与法钢公司中发现的条件类似, 在无菌文化中进行区分 PVs8,</s…

Discussion

上述法钢公司感染试验所产生的定量数据, 使调查人员能够在相对较短的时间内获得感染率和可靠地测定毒力特性的变化 (最多2周, 比2体内实验所需的月份)。这种方法依赖于 DNA 特异染料 DAPI, 专门染色巨噬细胞和寄生虫细胞核, 并允许快速识别和量化感染细胞。相比之下, 其他污渍, 如姬姆萨绑定到大量不同的细胞分量, 具有不同的强度, 复杂的视觉分析37。使用 DAPI 允许识?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了国家卫生研究院资助 RO1 AI067979 NWA。
YK 是霍华德休斯医学院/马里兰大学帕克分校的本科生奖学金获得者。

Materials

6 well cell culture plate Cellstar 657160
Adenine Acros Organics AC147440250
Aerosol Barrier Pipet Tips (100-1000 μL) Fisherbrand 02-707-404
Aerosol Barrier Pipet Tips (20-200 μL) Fisherbrand 02-707-430
Aerosol Barrier Pipet Tips (2-20 μL) Fisherbrand 02-707-432
Bard-Parker Rib-Back Carbon Steel Surgical Blade #10 Aspen Surgical 371110
BD Luer-Lok Tip 10 mL Syringe Becton Dickinson (BD) 309604
BD Precisionglide Needle, 25G  Becton Dickinson (BD) 305124
Cell Culture Dish 35 mm x 10 mm Cellstar 627 160
Cell Culture Flask Cellstar 660175
Cover Glasses: 12 mm circles Fisherbrand 12-545-80
DAPI (4',6-Diamidino-2-Phenylindole, Dihydrochloride) Invitrogen D1306
D-Biotin J.T. Baker C272-00
EDTA Sigma Aldrich EDS
Ethyl alcohol 200 proof Pharmco-AAPER 111000200
Falcon 100 mm x 15 mm non-TC-treated polystyrene Petri dish Corning 351029
Fetal Bovine Serum Seradigm 1500-500
Ficoll400 Sigma Aldrich F8016
Fluorescence Microscope Nikon E200
Goat anti-mouse IgG Texas red Invitrogen T-862
Goat anti-rabbit IgG AlexaFluor488 Invitrogen A-11034
Hemin Tokyo Chemical Industry Co. LTD H0008
HEPES (1M) Gibco 15630-080
Isoton II Diluent Beckman Coulter 8546719
L-Glutamine Gemini 400-106
Medium 199 (10X) Gibco 11825-015
Na pyruvate (100 mM) Gibco 11360-070
Paraformaldehyde Alfa Aesar 43368
Penicillin/Streptomycin Gemini 400-109
Phosphate Buffered Saline (-/-) ThermoFisher 14200166
Polypropyline conical Centrifuge Tubes 15 mL Cellstar 188 271
Polypropyline conical Centrifuge Tubes 50 mL Cellstar 227 261
ProLong Gold antifade reagent ThermoFisher P36930
Rat anti-mouse Lamp-1 antibody Developmental Studies Hybridoma Bank 1D4B
Recombinant Human M-CSF PeproTech 300-25
Reichert Bright-Line  Hemocytometer  Hausser Scientific 1492
RPMI Medium 1640 (1X) Gibco 11875-093
Triton X-100 Surfactant Millipore Sigma TX1568-1
Trypan Blue Sigma Aldrich T8154
Delicate Scissors, 4 1/2" VWR 82027-582
Dissecting Forceps, Fine Tip VWR 82027-386
Microscope Slides VWR 16004-368
Z1 Coulter Particle Counter, Dual Threshold Beckman Coulter 6605699

References

  1. WHO. Control of the leishmaniases. World Health Organ Tech Rep Ser. (949), (2010).
  2. Naderer, T., McConville, M. J. Intracellular growth and pathogenesis of Leishmania parasites. Essays Biochem. 51, 81-95 (2011).
  3. Rosenzweig, D., et al. Retooling Leishmania metabolism: from sand fly gut to human macrophage. FASEB J. 22 (2), 590-602 (2008).
  4. Lahav, T., et al. Multiple levels of gene regulation mediate differentiation of the intracellular pathogen Leishmania. The FASEB Journal. 25 (2), 515-525 (2011).
  5. Saunders, E. C., et al. Induction of a stringent metabolic response in intracellular stages of Leishmania mexicana leads to increased dependence on mitochondrial metabolism. PLoS Pathog. 10 (1), e1003888 (2014).
  6. Mittra, B., et al. Iron uptake controls the generation of Leishmania infective forms through regulation of ROS levels. J Exp Med. 210 (2), 401-416 (2013).
  7. Kloehn, J., et al. Using metabolomics to dissect host-parasite interactions. Curr Opin Microbiol. 32, 59-65 (2016).
  8. Huynh, C., Sacks, D. L., Andrews, N. W. A Leishmania amazonensis ZIP family iron transporter is essential for parasite replication within macrophage phagolysosomes. J Exp Med. 203 (10), 2363-2375 (2006).
  9. Flannery, A. R., Huynh, C., Mittra, B., Mortara, R. A., Andrews, N. W. LFR1 Ferric Iron Reductase of Leishmania amazonensis Is Essential for the Generation of Infective Parasite Forms. J Biol Chem. 286 (26), 23266-23279 (2011).
  10. Miguel, D. C., Flannery, A. R., Mittra, B., Andrews, N. W. Heme uptake mediated by LHR1 is essential for Leishmania amazonensis virulence. Infect Immun. 81 (10), 3620-3626 (2013).
  11. Cortez, M., et al. Leishmania Promotes Its Own Virulence by Inducing Expression of the Host Immune Inhibitory Ligand CD200. Cell Host Microbe. 9 (6), 463-471 (2011).
  12. Mittra, B., Andrews, N. W. IRONy OF FATE: role of iron-mediated ROS in Leishmania differentiation. Trends Parasitol. 29 (10), 489-496 (2013).
  13. Mittra, B., et al. A Trypanosomatid Iron Transporter that Regulates Mitochondrial Function Is Required for Leishmania amazonensis Virulence. PLoS Pathog. 12 (1), e1005340 (2016).
  14. Ben-Othman, R., et al. Leishmania-mediated inhibition of iron export promotes parasite replication in macrophages. PLoS Pathog. 10 (1), e1003901 (2014).
  15. Renberg, R. L., et al. The Heme Transport Capacity of LHR1 Determines the Extent of Virulence in Leishmania amazonensis. PLoS Negl Trop Dis. 9 (5), e0003804 (2015).
  16. McConville, M. J. Metabolic Crosstalk between Leishmania and the Macrophage Host. Trends Parasitol. 32 (9), 666-668 (2016).
  17. Carrera, L., et al. Leishmania promastigotes selectively inhibit interleukin 12 induction in bone marrow-derived macrophages from susceptible and resistant mice. J Exp Med. 183 (2), 515-526 (1996).
  18. Hsiao, C. H., et al. The effects of macrophage source on the mechanism of phagocytosis and intracellular survival of Leishmania. Microbes Infect. 13 (12-13), 1033-1044 (2011).
  19. Murray, A. S., Lynn, M. A., McMaster, W. R. The Leishmania mexicana A600 genes are functionally required for amastigote replication. Mol Biochem Parasitol. 172 (2), 80-89 (2010).
  20. Farias Luz, N., et al. RIPK1 and PGAM5 Control Leishmania Replication through Distinct Mechanisms. J Immunol. 196 (12), 5056-5063 (2016).
  21. Franco, L. H., et al. Autophagy downstream of endosomal Toll-like receptor signaling in macrophages is a key mechanism for resistance to Leishmania major infection. J Biol Chem. 292 (32), 13087-13096 (2017).
  22. da Silva, M. F., Zampieri, R. A., Muxel, S. M., Beverley, S. M., Floeter-Winter, L. M. Leishmania amazonensis arginase compartmentalization in the glycosome is important for parasite infectivity. PLoS One. 7 (3), e34022 (2012).
  23. Carneiro, P. P., et al. The Role of Nitric Oxide and Reactive Oxygen Species in the Killing of Leishmania braziliensis by Monocytes from Patients with Cutaneous Leishmaniasis. PLoS One. 11 (2), e0148084 (2016).
  24. Siqueira-Neto, J. L., et al. An image-based high-content screening assay for compounds targeting intracellular Leishmania donovani amastigotes in human macrophages. PLoS Negl Trop Dis. 6 (6), e1671 (2012).
  25. Pastor, J., et al. Combinations of ascaridole, carvacrol, and caryophyllene oxide against Leishmania. Acta Trop. 145, 31-38 (2015).
  26. Giarola, N. L., et al. Leishmania amazonensis: Increase in ecto-ATPase activity and parasite burden of vinblastine-resistant protozoa. Exp Parasitol. 146, 25-33 (2014).
  27. Sacks, D. L., Melby, P. C. Animal models for the analysis of immune responses to leishmaniasis. Curr Protoc Immunol. , 12 (2001).
  28. Tabbara, K. S., et al. Conditions influencing the efficacy of vaccination with live organisms against Leishmania major infection. Infect Immun. 73 (8), 4714-4722 (2005).
  29. Price, J. V., Vance, R. E. The macrophage paradox. Immunity. 41 (5), 685-693 (2014).
  30. Huynh, C., Andrews, N. W. Iron acquisition within host cells and the pathogenicity of Leishmania. Cell Microbiol. 10 (2), 293-300 (2008).
  31. Blackwell, J. M., et al. SLC11A1 (formerly NRAMP1) and disease resistance. Cell Microbiol. 3 (12), 773-784 (2001).
  32. Pinto-da-Silva, L. H., et al. The 3A1-La monoclonal antibody reveals key features of Leishmania (L) amazonensis metacyclic promastigotes and inhibits procyclics attachment to the sand fly midgut. Int J Parasitol. 35 (7), 757-764 (2005).
  33. Spath, G. F., Beverley, S. M. A lipophosphoglycan-independent method for isolation of infective Leishmania metacyclic promastigotes by density gradient centrifugation. Exp Parasitol. 99 (2), 97-103 (2001).
  34. Zilberstein, D., Shapira, M. The role of pH and temperature in the development of Leishmania parasites. Annu Rev Microbiol. 48, 449-470 (1994).
  35. Bates, P. A. Transmission of Leishmania metacyclic promastigotes by phlebotomine sand flies. Int J Parasitol. 37 (10), 1097-1106 (2007).
  36. Bates, P. A., Robertson, C. D., Tetley, L., Coombs, G. H. Axenic cultivation and characterization of Leishmania mexicana amastigote-like forms. Parasitology. 105 (Pt 2), 193-202 (1992).
  37. Frickmann, H., et al. Rapid identification of Leishmania spp. in formalin-fixed, paraffin-embedded tissue samples by fluorescence in situ hybridization. Trop Med Int Health. 17 (9), 1117-1126 (2012).
  38. Seguin, O., Descoteaux, A. Leishmania, the phagosome, and host responses: The journey of a parasite. Cell Immunol. 309, 1-6 (2016).
  39. Wanderley, J. L., Thorpe, P. E., Barcinski, M. A., Soong, L. Phosphatidylserine exposure on the surface of Leishmania amazonensis amastigotes modulates in vivo infection and dendritic cell function. Parasite Immunol. 35 (3-4), 109-119 (2013).
  40. Crauwels, P., et al. Apoptotic-like Leishmania exploit the host’s autophagy machinery to reduce T-cell-mediated parasite elimination. Autophagy. 11 (2), 285-297 (2015).
  41. Bringmann, G., et al. A novel Leishmania major amastigote assay in 96-well format for rapid drug screening and its use for discovery and evaluation of a new class of leishmanicidal quinolinium salts. Antimicrob Agents Chemother. 57 (7), 3003-3011 (2013).
  42. Sacks, D. L., Brodin, T. N., Turco, S. J. Developmental modification of the lipophosphoglycan from Leishmania major promastigotes during metacyclogenesis. Mol Biochem Parasitol. 42 (2), 225-233 (1990).
  43. Sacks, D. L. Leishmania-sand fly interactions controlling species-specific vector competence. Cell Microbiol. 3 (4), 189-196 (2001).
  44. McConville, M. J., Turco, S. J., Ferguson, M. A., Sacks, D. L. Developmental modification of lipophosphoglycan during the differentiation of Leishmania major promastigotes to an infectious stage. EMBO J. 11 (10), 3593-3600 (1992).
  45. Sacks, D. L., Hieny, S., Sher, A. Identification of cell surface carbohydrate and antigenic changes between noninfective and infective developmental stages of Leishmania major promastigotes. J Immunol. 135 (1), 564-569 (1985).
  46. Yao, C., Chen, Y., Sudan, B., Donelson, J. E., Wilson, M. E. Leishmania chagasi: homogenous metacyclic promastigotes isolated by buoyant density are highly virulent in a mouse model. Exp Parasitol. 118 (1), 129-133 (2008).
  47. Almeida Marques-da-Silva, E., et al. Extracellular nucleotide metabolism in Leishmania: influence of adenosine in the establishment of infection. Microbes Infect. 10 (8), 850-857 (2008).
  48. Moreira, D., et al. Impact of continuous axenic cultivation in Leishmania infantum virulence. PLoS Negl Trop Dis. 6 (1), e1469 (2012).
  49. Svensjo, E., et al. Interplay between parasite cysteine proteases and the host kinin system modulates microvascular leakage and macrophage infection by promastigotes of the Leishmania donovani complex. Microbes Infect. 8 (1), 206-220 (2006).
check_url/57486?article_type=t

Play Video

Cite This Article
Sarkar, A., Khan, Y. A., Laranjeira-Silva, M. F., Andrews, N. W., Mittra, B. Quantification of Intracellular Growth Inside Macrophages is a Fast and Reliable Method for Assessing the Virulence of Leishmania Parasites. J. Vis. Exp. (133), e57486, doi:10.3791/57486 (2018).

View Video