Summary

שליטה במהירויות זרימה של נוזלים פעילים תלת-ממדיים מבוססי מיקרוכדורית באמצעות טמפרטורה

Published: November 26, 2019
doi:

Summary

המטרה של פרוטוקול זה היא להשתמש בטמפרטורה כדי לשלוט על מהירויות הזרימה של נוזלים פעילים תלת ממדיים. היתרון של שיטה זו לא רק מאפשר להסדיר מהירויות זרימה באתרו, אלא גם מאפשר בקרה דינמית, כגון מהירויות זרימה מעת לעת כוונון מעלה ומתחת.

Abstract

אנו מציגים שיטה לשימוש בטמפרטורה כדי לכוונן את מהירויות הזרימה של הנוזלים הפעילים, תלת-ממדיים המבוססים על מיקרו-מימדי (3D). שיטה זו מאפשרת כוונון המהירויות באתרו ללא צורך לייצר דגימות חדשות כדי להגיע למהירויות רצויות שונות. כמו-כן, שיטה זו מאפשרת שליטה דינמית במהירות. רכיבה על הטמפרטורה מובילה את הנוזלים לזרום מהר ואיטי, מדי פעם. הישור הזאת מבוססת על המאפיין ארניוס של התגובה המיקרוכימית, הממחיש טווח מהירות מבוקר של זרימה של 4 – 8 μm/s. השיטה המוצגת תפתח את הדלת לעיצוב של התקנים microflu, היכן שקצבי הזרימה בערוץ מסוגלים להיות מקומיים ללא צורך בשסתום.

Introduction

חומר פעיל מובחנים מחומר פסיבי קונבנציונאלי בשל יכולתה להמיר אנרגיה כימית לעבודה מכנית. חומר שבעל יכולת כזו יכול להיות מורכב מגופים חיים או שאינם חיים, כגון חיידקים, חרקים, colloids, דגנים, וחוטי ציטולדים1,2,3,4,5,6,7,8,9,10. הישויות החומריות האלה. מאינטראקציה עם השכנים שלהם בקנה מידה גדול יותר, הם מסדרים את עצמם לתוך או מערבולות כמו הסוערת (מערבולת פעילה) או חומר זורם11,12,13,14,15,16,17,18,19,20. הבנה של ארגון עצמי של חומר פעיל הובילה ליישומים שונים במעבורות מולקולריות, במכשירים אופטיים ובחישוב מקבילי21,22,23. כדי להביא את היישומים לרמה הבאה יש צורך בשליטה מעבר לארגון העצמי. לדוגמה, פאלאצ’י ואח ‘ פיתח קולואיד ממטיט שהיה ממונע עצמית רק כאשר הוא נחשף לאור כחול בשליטה ידנית, מה שהוביל להופעת קריסטלים חיים24. מורין ואח ‘ הקימה את השליטה בגלגול הcolloids של קוויק באמצעות שדה חשמלי חיצוני, והתוצאה היא שנוהרים לכאן בערוץ מסלול המרוצים, כמו25. עבודות קודמות אלה מדגימות את התפקיד של השליטה המקומית ביישומים ומקדמות את בסיס הידע של החומר הפעיל.

במאמר זה, אנו מתמקדים ישור של kinesin מונחה, מיקרוטוכדורית (MT) מבוססי נוזלים פעילים תלת-ממד. הנוזלים מורכבים משלושה מרכיבים עיקריים: MTs, מנועים מולקולריים ומתכלים. מרוקן לגרום כוח מחסור לצרור MTs, אשר מאוחר יותר מגשר על ידי אשכולות מנוע. המנועים האלה הולכים. לאורך הקצה החיובי כאשר זוג מגשר מ, המנועים המקבילים מסתובבים בכיוונים מנוגדים. עם זאת, המנועים מאוגדים באשכול ואינם יכולים להתפרק, ולכן הם בשיתוף זוגות בנפרד של MTs (הזזה בין פילמנט, איור 1א). אלה הדינמיקה הזזה להצטבר, גרימת צרורות של MTsto להאריך עד להגיע אי-יציבות הקריסה שלהם נקודה ושבור (extensile צרורות, איור 1B)26. הצרורות השבורים מופרים על ידי כוח המחסור, המשתרע לאחר מכן, והדינמיקה חוזרת. במהלך תהליך הדינמיקה החוזרת, תנועות הצרור מעוררות את הנוזל הסמוך, גורם לזרמים שניתן לדמיין באמצעות מטים מיקרון בקנה מידה (איור 1ג). סאנצ’ס ואח ‘ והנקין אל. אפיינו את מהירויות המשמעות של המשדרים, מציאת כי המהירויות היו שונות על ידי שינוי ריכוזי אדנוזין טריפוספט (ATP), מרוקן, אשכולות מנוע, ו MTs19,27. עם זאת, היכולת הזאת קיימת רק לפני סינתזה נוזל פעיל. לאחר הסינתזה, היכולת הייתה לאבד והנוזלים המאורגנים בדרכם. כדי לשלוט על פעילות הנוזל הפעיל לאחר סינתזה, Ross.et al. דיווחו על שיטה באמצעות הפעלת האור המופעל של חלבונים מוטוריים, המאפשר פעילות נוזלים להיות מכוון ולכבות באמצעות אור28. בעוד שבקרת האור נוחה במונחים של הפעלת הנוזלים באופן מקומי, השיטה מחייבת לעצב מראש את המבנים של החלבונים המוטוריים, יחד עם שינוי הנתיבים האופטיים במיקרוסקופ. כאן, אנו מספקים שיטה קלה לשימוש עבור שליטה מקומית זורם נוזלים ללא שינוי מיקרוסקופ תוך שמירה על מבנה המנוע ללא פגע.

השיטה שלנו לכוונון מקומי זרימה נוזל פעיל מבוסס על חוק arrhenius כי התגובה kinesin-MT כבר דווח להגדיל עם טמפרטורה29,30,31,32. מחקרים קודמים שלנו הראו כי התלות בטמפרטורה של מהירות ממוצע של זרימת נוזל פעיל עקב משוואת Arrhenius: v = exp (-EA/RT), כאשר הוא גורם טרום מעריכי , R הוא קבוע הגז , Ea היא אנרגיית ההפעלה, ו T היא טמפרטורת המערכת33. לכן, פעילות הנוזלים רגישה לסביבת הטמפרטורה, וטמפרטורת המערכת צריכה להיות עקבית כדי לייצב את הביצועים המוטוריים, וכתוצאה מכך מהירות זרימת הנוזלים34. במאמר זה, אנו מדגימים את השימוש בתלות הטמפרטורה של המנוע כדי לכוונן ברציפות את מהירויות הזרימה של נוזלים פעילים על-ידי התאמת טמפרטורת המערכת. אנו גם להדגים את ההכנה של דגימת נוזל פעיל, ואחריו לעלות את המדגם על הבמה מיקרוסקופ אשר הטמפרטורה נשלטת באמצעות תוכנת מחשב. הגדלת הטמפרטורה מ -16 ° c עד 36 ° c מאיץ את מהירויות הזרימה הממוצע בין 4 ל-8 μm/s. בנוסף, יכולת התנועה הפיכה: הגדלה והקטנה של הטמפרטורה ברצף מאיצה ומאטה את הזרימה. השיטה שהוראתה מתאימה למגוון רחב של מערכות בהן התגובות העיקריות מצייתות לחוק ארניוס, כגון שיטת הר הדאייה29,30,31,32.

Protocol

1. הכנת MTs התראה: בשלב זה אנו מטהרו את הטובולים מרקמת מוח של שור. המוח של שור עלול לגרום מחלה של הגרסה Creutzfeldt-יאקוב (vCJD)35. לכן יש לאסוף את החומרים הקשורים לפסולת המוח והפתרונות הנלווים, הבקבוקים והפיפטה בשקית biowaste ולהיפטר מפסולת ביולוגית בהתאם לכללי המוסד. לטה…

Representative Results

הכנת מונחה-בסיס, MT מבוססי נוזלים פעילים מחייב הן קינזין ו MTs. MTs היו פולימנים מן הטובולים שכותרתו (שלבים 1.3 ו 1.4) כי היו מטוהרים מן המוח שור (שלב 1.1, איור 2א), ואחריו מיחזור כדי לשפר את טוהר (שלב 1.2, איור 2ב). החלבונים המוטוריים של קינסין הביעו ביטו?…

Discussion

שליטה על החומר הפעיל באתרו פותח את הדלת כדי לביים ארגון עצמי של חומר פעיל4,5,24,28,54. במאמר זה, אנו מציגים פרוטוקול עבור שימוש בטמפרטורה כדי לשלוט kinesin מונחה, MT מבוססי נוזלים פעילים באתרו, מבוסס על המאפיין …

Disclosures

The authors have nothing to disclose.

Acknowledgements

פלאממיד K401-בH6-במק הייתה מתנה מדוקטור זוונמיר דוכולינ. מחקר זה נתמך על ידי קרן ההפעלה של ד ר קון-טה וו במכון הפוליטכני של ווסטר. אנו מודים לד ר זוונמיר דויד עבור הפרוטוקולים לטיהור ולטובולין תוויות ולסנתז נוזלים פעילים. אנו אסירי תודה לד ר מארק ריגילה על המומחיות שלו בביטוי חלבונים וטיהור. אנו מודים לד ר ויליאם בנימין רוג’ר על שעזר לנו בבניית הבמה הנשלטת על-ידי טמפרטורה. אנו מכירים את ברנדייס MRSEC (NSF-MRSEC-1420382) לשימוש במתקן החומרים הביולוגיים (BMF). אנו מכירים את האגודה המלכותית לכימיה על התאמת הנתונים מ Bate ואח ‘. על חומר רך33.

Materials

(±)-6-Hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid Sigma-Aldrich 238813 Trolox
2-Mercaptoethanol Sigma-Aldrich M6250
3-(Trimethoxysilyl)propyl methacrylate, 98%, ACROS Organics Fisher Scientific AC216550050
3.2mm I.D. Tygon Tubing R-3603 HACH 2074038 Water tubes
31.75 mm diameter uncoated, sapphire window Edmund Optics 43-637 Sapphire disc
3M 1181 Copper Tape – 1/2 IN Width X 18 YD Length – 2.6 MIL Total Thickness – 27551 R.S. HUGHES 054007-27551 Copper tape
Acetic Acid Sigma-Aldrich A6283
Acrylamide Solution (40%/Electrophoresis), Fisher BioReagents Fisher Scientific BP1402-1
Adenosine 5'-triphosphate dipotassium salt hydrate Sigma-Aldrich A8937 ATP
Alexa Fluor 647 NHS Ester (Succinimidyl Ester) Thermo Fisher Scientific A20006 Far-red fluorescent dye. Alexa 647 can be pre suspended in dimethylsulfoxide (DMSO) before mixing with microtubules (1.3.3.2.)
Amicon Ultra-4 Centrifugal Filter Unit Sigma-Aldrich UFC801024 Centrifugal filter tube. Cutoff molecular weight: 10 kDa
Ammonium Persulfate, 100g, MP Biomedicals Fisher Scientific ICN802829 APS
Ampicillin Sodium Salt (Crystalline Powder), Fisher BioReagents Fisher Scientific BP1760 Ampicillin
Antivibration Table Nikon 63-7590S
Avanti J-E Centrifuge Beckman Coulter 369001
Bacto Agar Soldifying Agent, BD Diagnostics VWR 90000-760 Agar
Biotin Alfa Aesar A14207
Bucket-plastic white – 2 gallon Bon 84-715 Water bucket
Calcium Chloride Sigma-Aldrich 746495 CaCl2
Catalase from bovine liver Sigma-Aldrich C40
CFI Plan Apo Lambda 4x Obj Nikon MRD00045 4x air objective
C-FLLL-FOV GFP HC HC HISN ero Shift Nikon 96372 GFP filter cube
CH-109-1.4-1.5 TE Technology CH-109-1.4-1.5 Thermoelectric Cooler (TEC)
Chloramphenicol, 98%, ACROS Organics Fisher Scientific C0378
Cooling block N/A N/A Custom milled aluminum
Coomassie Brilliant Blue R-250 #1610400 Bio-Rad 1610400 Triphenylmethane dye
D-(+)-Glucose Sigma-Aldrich G7528
Dimethyl Sulfoxide (Certified ACS), Fisher Chemical Fisher Scientific D128 DMSO
DL-1,4-Dithiothreitol, 99%, for biochemistry, ACROS Organics Fisher Scientific AC165680050 DTT
DOWSIL 340 Heat Sink Compound Dow 1446622 Thermal paste
ETHYL ALCOHOL, 200 PROOF ACS/USP/NF GRADE 5 GALLON POLY CUBE Pharmco by Greenfield Global 111000200CB05 Ethanol
Ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid Sigma-Aldrich E3889 EGTA
Ethylenediaminetetraacetic acid Sigma-Aldrich 798681 EDTA
Fisher BioReagents Microbiology Media Additives: Tryptone Fisher Scientific BP1421 Tryptone
Fisher BioReagents Microbiology Media Additives: Yeast Extract Fisher Scientific BP1422 Yeast extract
Fluoresbrite YG Microspheres, Calibration Grade 3.00 µm Polysciences 18861 Tracer particles
Glucose Oxidase from Aspergillus niger Sigma-Aldrich G2133
Glycerol Sigma-Aldrich G5516
GpCpp Jena Bioscience NU-405L Guanosine-5′[(α,β)-methyleno]triphosphate (GMPCPP)
GS Power's 18 Gauge (True American Wire Ga), 100 feet, 99.9% Stranded Oxygen Free Copper OFC, Red/Black 2 Conductor Bonded Zip Cord Power/Speaker Electrical Cable for Car, Audio, Home Theater Amazon B07428NBCW Copper wire
Guanosine 5'-triphosphate sodium salt hydrate Sigma-Aldrich G8877 GTP
Hellmanex III Sigma-Aldrich Z805939 Detergent
HEPES Sodium Salt (White Powder), Fisher BioReagents Fisher Scientific BP410 NaHEPES
High performance blender machine AIMORES AS-UP1250 Blender
His GraviTrap GE Healthcare 11003399 Gravity Column
Imidazole Sigma-Aldrich I5513
IPTG Sigma-Aldrich I6758 Isopropyl β-D-1-thiogalactopyranoside
Isopropyl Alcohol 99% Pharmco by Greenfield Global 231000099 Isopropanol
JA-10 rotor Beckman Coulter 369687
L-Glutamic acid potassium salt monohydrate Sigma-Aldrich G1501 K-Glutamate
Lysozyme from chicken egg white Sigma-Aldrich L6876
Magnesium chloride hexahydrate Sigma-Aldrich M2670 MgCl2•6H2O
MES sodium salt Sigma-Aldrich M5057 2-(N-Morpholino)ethanesulfonic acid sodium salt
MOPS Sigma-Aldrich M1254 3-(N-Morpholino)propanesulfonic acid
MP-3022 TE Technology MP-3022 Thermocouple
N,N,N',N'-Tetramethylethylenediamine 99%, ACROS Organics Fisher Scientific AC138450500 TEMED
Nanodrop 2000c UV-VIS Spectrophotometer Thermo Fisher Scientific E112352 Spectrometer
Nikon Ti2-E Nikon Inverted Microscope Nikon MEA54000
Norland Optical Adhesive 81 Norland Products NOA81 UV glue
Novex Sharp Pre-stained Protein Standard Thermo Fisher Scientific LC5800 Protein standard ladder
NuPAGE 4-12% Bis-Tris Protein Gels, 1.5 mm, 10-well Thermo Fisher Scientific NP0335BOX SDS gel
Optima L-90K Ultracentrifuge Beckman Coulter 365672
Parafilm PM996 Wrap , 4" Wide; 125 Ft/Roll Cole-Parmer EW-06720-40 Wax film
Pe 300 ultra Illumination System Single
Band , 3mm Light Guide control Pod
power supply
Nikon PE-300-UT-L-SB-40 Cool LED Illuminator
Phenylmethanesulfonyl fluoride Sigma-Aldrich 78830 PMSF
Phosphoenolpyruvic acid monopotassium salt, 99% BeanTown Chemical 129745 PEP
Pierce Coomassie (Bradford) Protein Assay Kit Thermo Fisher Scientific 23200
Pierce Protease Inhibitor Mini Tablets Thermo Fisher Scientific A32953
PIPES Sigma-Aldrich P6757 1,4-Piperazinediethanesulfonic acid
Pluronic F-127 Sigma-Aldrich P2443
Poly(ethylene glycol) Sigma-Aldrich 81300 PEG. Average molecular weight 20,000 Da
Potassium Hydroxide (Pellets/Certified ACS), Fisher Chemical Fisher Scientific P250-500 KOH
PowerEase 300W Power Supply (115 VAC) ThermoFisher Scientific PS0300 DC power supply of the gel box
PS-12-8.4A TE Technology PS-12-8.4A DC power supply of the temperature controller
Pyruvate Kinase/Lactic Dehydrogenase enzymes from rabbit muscle Sigma-Aldrich P-0294 PK/LDH
Quiet One Lifegard Fountain Pump, 296-Gallon Per Hour Amazon B005JWA612 Fish tank pump
Rosetta 2(DE3)pLysS Competent Cells – Novagen Millipore Sigma 71403 Competent cells
Sharp Microwave ZSMC0912BS Sharp 900W Countertop Microwave Oven, 0.9 Cubic Foot, Stainless Steel Amazon B01MT6JZMR Microwave for boiling the water
Sodium Chloride (Crystalline/Certified ACS), Fisher Chemical Fisher Scientific S271-500 NaCl
Sodium dodecyl sulfate Sigma-Aldrich L3771 SDS
Sodium phosphate monobasic Sigma-Aldrich S8282 NaH2PO4
Streptavidin Protein Thermo Fisher Scientific 21122
Sucrose Sigma-Aldrich S7903
TC-720 TE Technology TC-720 Temperature controller
Tris Base, Molecular Biology Grade – CAS 77-86-1 – Calbiochem Sigma-Aldrich 648310 Tris-HCL
Type 45 Ti rotor Beckman Coulter 339160
Type 70 Ti rotor Beckman Coulter 337922
Type 70.1 Ti rotor Beckman Coulter 342184
VWR General-Purpose Laboratory Labeling Tape VWR 89097-916 Paper tapes
VWR Micro Cover Glasses, Square, No. 1 1/2 VWR 48366-227 Glass coverslips
VWR Plain and Frosted Micro Slides, Premium VWR 75799-268 Glass slides
XCell SureLock Mini-Cell ThermoFisher Scientific EI0001 Gel box
ZYLA 5.5 USB3.0 Camera Nikon ZYLA5.5-USB3 Monochrome CCD camera

References

  1. Wioland, H., Lushi, E., Goldstein, R. E. Directed Collective Motion of Bacteria under Channel Confinement. New Journal of Physics. 18 (7), 075002 (2016).
  2. Wioland, H., Woodhouse, F. G., Dunkel, J., Kessler, J. O., Goldstein, R. E. Confinement Stabilizes a Bacterial Suspension into a Spiral Vortex. Physical Review Letters. 110 (26), 268102 (2013).
  3. Buhl, J., et al. From Disorder to Order in Marching Locusts. Science. 312 (5778), 1402-1406 (2006).
  4. Aubret, A., Youssef, M., Sacanna, S., Palacci, J. Targeted Assembly and Synchronization of Self-Spinning Microgears. Nature Physics. 14, 1114 (2018).
  5. Driscoll, M., et al. Unstable Fronts and Motile Structures Formed by Microrollers. Nature Physics. 13 (4), 375 (2017).
  6. Bricard, A., et al. Emergent Vortices in Populations of Colloidal Rollers. Nature Communications. 6, 7470 (2015).
  7. Kumar, N., Soni, H., Ramaswamy, S., Sood, A. K. Flocking at a Distance in Active Granular Matter. Nature Communications. 5, 4688 (2014).
  8. Farhadi, L., Fermino Do Rosario, C., Debold, E. P., Baskaran, A., Ross, J. L. Active Self-Organization of Actin-Microtubule Composite Self-Propelled Rods. Frontiers in Physics. 6 (75), 1 (2018).
  9. Schaller, V., Weber, C., Semmrich, C., Frey, E., Bausch, A. R. Polar Patterns of Driven Filaments. Nature. 467 (7311), 73-77 (2010).
  10. Keber, F. C., et al. Topology and Dynamics of Active Nematic Vesicles. Science. 345 (6201), 1135-1139 (2014).
  11. Doostmohammadi, A., Ignés-Mullol, J., Yeomans, J. M., Sagués, F. Active Nematics. Nature Communications. 9 (1), 3246 (2018).
  12. Wensink, H. H., et al. Meso-Scale Turbulence in Living Fluids. Proceedings of the National Academy of Sciences of the United States of America. 109 (36), 14308-14313 (2012).
  13. Doostmohammadi, A., Yeomans, J. M. Coherent Motion of Dense Active Matter. The European Physical Journal Special Topics. 227 (17), 2401-2411 (2019).
  14. Guillamat, P., Ignés-Mullol, J., Sagués, F. Taming active turbulence with patterned soft interfaces. Nature Communications. 8 (1), 564 (2017).
  15. Maryshev, I., Goryachev, A. B., Marenduzzo, D., Morozov, A. Dry active turbulence in microtubule-motor mixtures. arXiv preprint. , (2018).
  16. Nishiguchi, D., Aranson, I. S., Snezhko, A., Sokolov, A. Engineering bacterial vortex lattice via direct laser lithography. Nature Communications. 9 (1), 4486 (2018).
  17. Shendruk, T. N., Thijssen, K., Yeomans, J. M., Doostmohammadi, A. Twist-induced crossover from two-dimensional to three-dimensional turbulence in active nematics. Physical Review E. 98 (1), 010601 (2018).
  18. Urzay, J., Doostmohammadi, A., Yeomans, J. M. Multi-scale statistics of turbulence motorized by active matter. Journal of Fluid Mechanics. 822, 762-773 (2017).
  19. Sanchez, T., Chen, D. T. N., DeCamp, S. J., Heymann, M., Dogic, Z. Spontaneous Motion in Hierarchically Assembled Active Matter. Nature. 491 (7424), 431-434 (2012).
  20. Wu, K. T., et al. Transition from Turbulent to Coherent Flows in Confined Three-Dimensional Active Fluids. Science. 355 (6331), (2017).
  21. Hess, H., et al. Molecular shuttles operating undercover: A new photolithographic approach for the fabrication of structured surfaces supporting directed motility. Nano Letters. 3 (12), 1651-1655 (2003).
  22. Aoyama, S., Shimoike, M., Hiratsuka, Y. Self-organized optical device driven by motor proteins. Proceedings of the National Academy of Sciences of the United States of America. 110 (41), 16408-16413 (2013).
  23. Nicolau, D. V., et al. Parallel computation with molecular-motor-propelled agents in nanofabricated networks. Proceedings of the National Academy of Sciences of the United States of America. 113 (10), 2591-2596 (2016).
  24. Palacci, J., Sacanna, S., Steinberg, A. P., Pine, D. J., Chaikin, P. M. Living Crystals of Light-Activated Colloidal Surfers. Science. 339 (6122), 936-940 (2013).
  25. Morin, A., Bartolo, D. Flowing Active Liquids in a Pipe: Hysteretic Response of Polar Flocks to External Fields. Physical Review X. 8 (2), 021037 (2018).
  26. Lakkaraju, S. K., Hwang, W. Critical Buckling Length versus Persistence Length: What Governs Biofilament Conformation. Physical Review Letters. 102 (11), 118102 (2009).
  27. Henkin, G., DeCamp, S. J., Chen, D. T. N., Sanchez, T., Dogic, Z. Tunable Dynamics of Microtubule-Based Active Isotropic Gels. Philosophical transactions. Series A, Mathematical, physical, and engineering sciences. 372 (2029), 20140142 (2014).
  28. Ross, T. D., et al. Controlling Organization and Forces in Active Matter through Optically-Defined Boundaries. arXiv:1812.09418. , (2018).
  29. Böhm, K. J., Stracke, R., Baum, M., Zieren, M., Unger, E. Effect of temperature on kinesin-driven microtubule gliding and kinesin ATPase activity. FEBS Letters. 466 (1), 59-62 (2000).
  30. Anson, M. Temperature dependence and arrhenius activation energy of F-actin velocity generated in vitro by skeletal myosin. Journal of Molecular Biology. 224 (4), 1029-1038 (1992).
  31. Hong, W., Takshak, A., Osunbayo, O., Kunwar, A., Vershinin, M. The Effect of Temperature on Microtubule-Based Transport by Cytoplasmic Dynein and Kinesin-1 Motors. Biophysical Journal. 111 (6), 1287-1294 (2016).
  32. Kawaguchi, K., Ishiwata, S. I. Thermal activation of single kinesin molecules with temperature pulse microscopy. Cell Motility. 49 (1), 41-47 (2001).
  33. Bate, T. E., Jarvis, E. J., Varney, M. E., Wu, K. T. Collective Dynamics of Microtubule-Based 3D Active Fluids from Single Microtubules. Soft Matter. 15 (25), 5006-5016 (2019).
  34. Tucker, R., et al. Temperature Compensation for Hybrid Devices: Kinesin’s Km is Temperature Independent. Small. 5 (11), 1279-1282 (2009).
  35. Collee, J. G., Bradley, R., Liberski, P. P. Variant CJD (vCJD) and bovine spongiform encephalopathy (BSE): 10 and 20 years on: part 2. Folia Neuropathologica. 44 (2), 102 (2006).
  36. Castoldi, M., Popov, A. V. Purification of brain tubulin through two cycles of polymerization-depolymerization in a high-molarity buffer. Protein Expression and Purification. 32 (1), 83-88 (2003).
  37. Swinehart, D. The Beer-Lambert law. Journal of Chemical Education. 39 (7), 333 (1962).
  38. Ashford, A. J., Andersen, S. S., Hyman, A. A. Preparation of tubulin from bovine brain. Cell biology: A laboratory handbook. 2, 205-212 (1998).
  39. Hyman, A., et al. . Methods in Enzymology. 196, 478-485 (1999).
  40. Baneyx, F. Recombinant protein expression in Escherichia coli. Current Opinion in Biotechnology. 10 (5), 411-421 (1999).
  41. Spriestersbach, A., Kubicek, J., Schäfer, F., Block, H., Maertens, B., Lorsch, J. R. . Methods in enzymology. 559, 1-15 (2015).
  42. Subramanian, R., Gelles, J. Two Distinct Modes of Processive Kinesin Movement in Mixtures of ATP and AMP-PNP. The Journal of General Physiology. 130 (5), 445-455 (2007).
  43. Gasteiger, E., et al. . The proteomics protocols handbook. , 571-607 (2005).
  44. Taylor, S. C., Berkelman, T., Yadav, G., Hammond, M. A Defined Methodology for Reliable Quantification of Western Blot Data. Molecular Biotechnology. 55 (3), 217-226 (2013).
  45. Lau, A. W. C., Prasad, A., Dogic, Z. Condensation of isolated semi-flexible filaments driven by depletion interactions. Europhysics Letters. 87 (4), 48006 (2009).
  46. Chandrakar, P., et al. Microtubule-Based Active Fluids with Improved Lifetime, Temporal Stability and Miscibility with Passive Soft Materials. arXiv:1811.05026. , (2018).
  47. Lowensohn, J., Oyarzún, B., Paliza, G. N., Mognetti, B. M., Rogers, W. B. Linker-mediated phase behavior of DNA-coated colloids. arXiv:1902.08883. , (2019).
  48. Wu, K. T., et al. Polygamous Particles. Proceedings of the National Academy of Sciences of the United States of America. 109 (46), 18731-18736 (2012).
  49. Wu, K. T., et al. Kinetics of DNA-Coated Sticky Particles. Physical Review E. 88 (2), 022304 (2013).
  50. Ouellette, N. T., Xu, H., Bodenschatz, E. A quantitative study of three-dimensional Lagrangian particle tracking algorithms. Experiments in Fluids. 40 (2), 301-313 (2005).
  51. Kelley, D. H., Ouellette, N. T. Using particle tracking to measure flow instabilities in an undergraduate laboratory experiment. American Journal of Physics. 79 (3), 267-273 (2011).
  52. Young, E. C., Berliner, E., Mahtani, H. K., Perez-Ramirez, B., Gelles, J. Subunit Interactions in Dimeric Kinesin Heavy Chain Derivatives That Lack the Kinesin Rod. Journal of Biological Chemistry. 270 (8), 3926-3931 (1995).
  53. Aström, K. J., Murray, R. M. . Feedback systems: an introduction for scientists and engineers. , (2011).
  54. Soni, V., et al. The free surface of a colloidal chiral fluid: waves and instabilities from odd stress and Hall viscosity. arXiv:1812.09990. , (2018).
  55. Harvey, M. Precision Temperature-Controlled Water Bath. Review of Scientific Instruments. 39 (1), 13-18 (1968).
  56. Beuchat, L. R. Influence of Water Activity on Growth, Metabolic Activities and Survival of Yeasts and Molds. Journal of Food Protection. 46 (2), 135-141 (1983).
  57. Block, S. S. . Disinnfection, sterilization, annd preservation. , (2001).
  58. Schumb, W. C., Satterfield, C. N., Wentworth, R. L. . Hydrogen peroxide. , (1955).
  59. Simmons, G. F., Smilanick, J. L., John, S., Margosan, D. A. Reduction of Microbial Populations on Prunes by Vapor-Phase Hydrogen Peroxide. Journal of Food Protection. 60 (2), 188-191 (1997).
  60. Shimoboji, T., Larenas, E., Fowler, T., Hoffman, A. S., Stayton, P. S. Temperature-induced switching of enzyme activity with smart polymer-enzyme conjugates. Bioconjugate chemistry. 14 (3), 517-525 (2003).

Play Video

Cite This Article
Bate, T. E., Jarvis, E. J., Varney, M. E., Wu, K. Controlling Flow Speeds of Microtubule-Based 3D Active Fluids Using Temperature. J. Vis. Exp. (153), e60484, doi:10.3791/60484 (2019).

View Video