Summary

合成阿普塔默-PEI-g-PEG改性金纳米粒子装载多索鲁比辛用于靶向药物输送

Published: June 23, 2020
doi:

Summary

在此协议中,多索鲁比辛加载 AS1411-g-PEI-g-PEG 改性金纳米粒子通过三步阿米内反应合成。然后,多索鲁比辛被加载并交付给靶向癌细胞进行癌症治疗。

Abstract

由于健康细胞的耐药性和毒性,多索鲁比辛(DOX)在临床癌症治疗中的使用受到限制。该协议描述了用聚乙二醇(PEI-g-PEG)二甘醇(PEI-g-PEG)共聚聚(乙二烯氨酸)嫁接的聚(乙二烯氨酸)与加载的阿普塔默(AS1411)和DOX通过阿米特反应进行功能化金纳米粒子(AuNPs)的设计。AS1411与癌细胞上的靶向核素受体特别结合,使DOX针对的是癌细胞而不是健康细胞。首先,PEG 是盒装的,然后嫁接到分支 PEI 以获得 PEI-g-PEG 聚合物,这一点由 1H NMR 分析确认。其次,PEI-g-PEG copolymer 涂层金纳米粒子 (PEI-g-PEG@AuNPs) 进行合成,DOX 和 AS1411 通过阿米德反应逐渐与 AuNP 粘合。制备的 AS1411-g-DOX-g-PEI-g-PEG@AuNPs直径为 39.9 nm,Zeta 电位为 -29.3 mV,表明纳米粒子在水和细胞介质中是稳定的。细胞毒性检测表明,新设计的DOX加载的AuNPs能够杀死癌细胞(A549)。这种合成展示了PEI-g-PEG共聚物、贴花和DOX在AuNP上的微妙排列,这些排列是通过连续的阿米德反应实现的。这种阿普塔默-PEI-g-PEG功能化的 AuNP 为癌症治疗中的靶向药物输送提供了一个很有前途的平台。

Introduction

癌症是世界性的主要公共卫生问题,其广泛特征是治愈率低、复发率高、死亡率高目前传统的抗癌方法包括手术、化疗和放疗3种,其中化疗是4号诊所癌症患者的主要治疗方法。临床使用的抗癌药物主要包括帕利塔塞尔(PTX)5和多索鲁比辛(DOX)6,7。DOX,一种抗肿瘤药物,由于癌症细胞毒性和抑制癌细胞增殖8,9的优点,已广泛应用于临床化疗。然而,DOX导致心毒性10,11,和DOX的短半生限制其应用在诊所12。因此,需要降解的药物携带者以可控的方式将 DOX 加载并以子等方式释放到目标区域。

纳米粒子已广泛应用于靶向药物输送系统,在癌症治疗方面具有若干优势(即表面与体积比大、体积小、封装各种药物的能力、可调谐表面化学等)。13,14,15.特别是金纳米粒子(AuNPs)已广泛应用于生物和生物医学应用,如光热癌治疗16,17。AuNPs的独特特性,如简体合成和一般表面功能化,在癌症治疗18的临床领域具有良好的前景。此外,AuNP已经被用来识别药物输送策略,诊断肿瘤,并克服阻力在许多研究19,20。

尽管如此,AuNP 需要进一步定制,通过增强渗透和保留 (EPR)(如靶向和辅助功能)在肿瘤病变时高局部释放来克服耐药性。聚合物功能化 AuNP 具有独特的优势,如疏水抗癌药物水溶解性提高,循环时间延长2122。各种生物相容聚合物已用于 AuNP 涂料,如聚乙二醇 (PEG)、聚乙烯胺 (PEI)、透明质酸、肝素和黄豆胶。然后,AuNP的稳定性和有效载荷得到很好的改善具体来说,PEI是一种高度分支的聚合物,由许多重复单位的初级,二级和三级胺24组成。PEI 具有极好的溶解度、低粘度和高功能性,适合涂在 AuNPs 上。

另一方面,抗癌药物需要直接输送到癌细胞,提高负荷效率,降低毒性,治疗原发性肿瘤和晚期转移性肿瘤25。靶向配体具有巨大的潜力,抗癌药物靶向输送系统26。其靶分子结合的选择性赋予抗癌药物针对特异性,并增加药物在病组织中的丰富性27。更多的配体包括抗体、多肽和小分子。与其他配体相比,核酸贴合剂可以在体外合成,易于修改。AS1411是一种未经改性26b磷化物寡核苷酸,形成稳定的二元G-四聚氰胺结构,专门与癌细胞28、29、30上过度表达的目标核蛋白受体结合。AS1411抑制许多癌细胞的增殖,但不影响健康细胞31,32的生长。因此,AS1411 被用来制造理想的有针对性的药物输送系统。

在这项研究中,PEI-g-PEG共聚物通过阿米德反应合成,然后制造PEI-g-PEG共聚物涂层金纳米粒子(PEI-g-PEG@AuNPs)。此外,DOX 和 AS1411 与准备好的 PEI-g-PEG@AuNPs有顺序链接,如 图 1所示。此详细的协议旨在帮助研究人员避免与制造装有 DOX 和 AS1411 的新 PEI-g-PEG@AuNPs相关的许多常见陷阱。

Protocol

注意:在使用所有化学品之前,请务必查阅所有相关材料安全数据表 (MSDS)。用于制备共聚物和纳米粒子的几种化学物质具有剧毒性。纳米粒子也有潜在的危害。确保使用所有适当的安全做法和个人防护设备,包括手套、实验室外套、头罩、全长裤子和近身鞋。 1. 双碳水化合物聚乙二醇(CT-PEG)合成33 将 1 . 46 克( 14 . 6 mmol )的氢化物( SA )和 209…

Representative Results

1H NMR光谱学用于确认CT-PEG聚合物和PEI-g-PEG共聚合物(图2)的成功合成。图2a显示,δ的甲基质子信号=3.61ppm,δ=2.57ppm的纸箱质子信号确认CT-PEG聚合物的成功合成。图2b显示PEG的乙烯质子信号在δ=2.6ppm,PEI的质子信号在δ=1.66ppm确认PEI-g-PEG共聚物的合成。 紫外线光谱学的进行,…

Discussion

1H NMR光谱(图2)确认CT-PEG共聚合体和PEI-g-PEG共聚合体的成功合成。PEG和PEI的分子量分别为1,000和1,200。此外,EDC/NHS催化系统还用于通过阿米德反应合成PEI-g-PEG共聚物。需要注意的是,如果PEG和PEI的分子量因合成PEI-g-PEG共聚物而发生变化,则需要重新评估反应时间和催化系统。此外,需要进一步调整AUNPs上PEI-g-PEG共聚合体涂层的反应条件,主要是因为PEG-g-PEI聚合体?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

本研究由中国国家自然科学基金委员会(31700840)资助:河南省重点科研项目(18B430013,18A150049)。这项研究得到了南湖青年学者项目的支持。作者要感谢来自XYNU生命科学学院的本科生曲泽波的乐于助人的作品。作者希望确认XYNU的分析和测试中心使用他们的设备。

Materials

4-Dimethylaminopyridine Macklin D807273
A549 cell ATCC CCL-185TM
AS1411 BBI Life Sciences Corporation 5'-d (TTTGGTGGTGGTGGTTGTGGTGGTGGTGG) FL-AS1411 (fluorophore-labeled AS1411)
Anhydrous Tetrahydrofuran (THF) SinoPharm Chemical Reagent Co., Ltd
Cell counting kit-8 (CCK-8) Sigma Aldrich 96992-500TESTS-F
Dichloromethane Traditional Chinese medicine 80047318
Diethyl ether (Et2O) SinoPharm Chemical Reagent Co., Ltd
Dimethyl sulfoxide Macklin D806645
Dulbecco's modified Eagle's medium (DMEM) Sigma Aldrich
Doxorubicin hydrochloride Rhawn R017518
Ether absolute Traditional Chinese medicine 80059618
Field Emission Transmission Electron Microscope FEI Company Tecnai G2 F 20
Gold(III) chloride trihydrate Rhawn R016035
Laser Particle-size Instrument Malvern Instruments Ltd ZetasizerNanoZS/Masterszer3000E
Microplate Reader Molecular Devices SpectraMax 190
N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride Macklin N808856
N-Hydroxysuccinimide Macklin H6231
NMR software Delta 5.2.1
Nuclear Magnetic Resonance Spectrometer JEOL JNM-ECZ600R/S3
Origin 8.5 OriginLab
Penicillin Sigma Aldrich V900929-100ML
Phosphate-buffered saline Sigma Aldrich P4417-100TAB
Poly(ethylene glycol) Sigma Aldrich 81188 BioUltra, average Mn ~ 1000
Poly (ethyleneimine) solution Sigma Aldrich 482595 average Mn ~ 1200, 50 wt.% in H2O
Sodium borohydride, powder Acros C18930
Streptomycin Sigma Aldrich 85886-10ML
Succinic anhydride Traditional Chinese medicine 30171826
Tetrahydrofuran Traditional Chinese medicine 40058161
Triethylamine Traditional Chinese medicine 80134318
UV/VIS/NIR Spectrometer Lambda950 Lambda950
X-ray Photoelectron Spectrometer Thermo Fisher Scientific K-ALPHA 0.5EV

References

  1. Abad, J. M., Bravo, I., Pariente, F., Lorenzo, E. Multi-tasking base ligand: a new concept of AuNPs synthesis. Analytical and Bioanalytical Chemistry. 408 (9), 2329-2338 (2016).
  2. Siegel, R. L., Miller, K. D., Jemal, A. Cancer statistics, 2019. CA-A Cancer Journal for Clinicians. 69 (1), 7-34 (2019).
  3. Jang, B., Kwon, H., Katila, P., Lee, S. J., Lee, H. Dual delivery of biological therapeutics for multimodal and synergistic cancer therapies. Advanced Drug Delivery Reviews. 98, 113-133 (2016).
  4. Gansler, T., et al. Sixty years of CA: a cancer journal for clinicians. CA-A Cancer Journal for Clinicians. 60 (6), 345-350 (2010).
  5. Li, J., et al. Molecular Mechanism for Selective Cytotoxicity towards Cancer Cells of Diselenide-Containing Paclitaxel Nanoparticles. International Journal of Biological Sciences. 15 (8), 1755-1770 (2019).
  6. Zhao, D., et al. Precise ratiometric loading of PTX and DOX based on redox-sensitive mixed micelles for cancer therapy. Colloids Surfaces B: Biointerfaces. 155, 51-60 (2017).
  7. Blum, R. H., Carter, S. K. Adriamycin. A new anticancer drug with significant clinical activity. Annals of Internal Medicine. 80 (2), 249-259 (1974).
  8. de Lima, R. D. N., et al. Low-level laser therapy alleviates the deleterious effect of doxorubicin on rat adipose tissue-derived mesenchymal stem cells. Journal of Photochemistry Photobiology B. 196, 111512 (2019).
  9. Markowska, A., Kaysiewicz, J., Markowska, J., Huczynski, A. Doxycycline, salinomycin, monensin and ivermectin repositioned as cancer drugs. Bioorganic & Medicinal Chemistry Letters. 29 (13), 1549-1554 (2019).
  10. Songbo, M., et al. Oxidative stress injury in doxorubicin-induced cardiotoxicity. Toxicology Letters. 307, 41-48 (2019).
  11. Ewer, M. S., Ewer, S. M. Cardiotoxicity of anticancer treatments. Nature Reviews Cardiology. 12 (9), 547-558 (2015).
  12. Gabizon, A., Shmeeda, H., Barenholz, Y. Pharmacokinetics of pegylated liposomal Doxorubicin: review of animal and human studies. Clinical Pharmacokinetics. 42 (5), 419-436 (2003).
  13. Xu, X., Ho, W., Zhang, X., Bertrand, N., Farokhzad, O. Cancer nanomedicine: from targeted delivery to combination therapy. Trends in Molecular Medicine. 21 (4), 223-232 (2015).
  14. Feng, S., Nie, L., Zou, P., Suo, J. Effects of drug and polymer molecular weight on drug release from PLGA-mPEG microspheres. Journal of Applied Polymer Science. 132 (6), 41431 (2015).
  15. Chen, D., et al. Injectable Temperature-sensitive Hydrogel with VEGF Loaded Microspheres for Vascularization and Bone Regeneration of Femoral Head Necrosis. Materials Letters. 229, 138-141 (2018).
  16. Abadeer, N. S., Murphy, C. J. Recent Progress in Cancer Thermal Therapy Using Gold Nanoparticles. The Journal of Physical Chemistry C. 120 (9), 4691-4716 (2016).
  17. Riley, R. S., Day, E. S. Gold nanoparticle-mediated photothermal therapy: applications and opportunities for multimodal cancer treatment. WIREs Nanomedicine and Nanobiotechnology. 9 (4), 1449 (2017).
  18. Fratoddi, I., et al. Highly Hydrophilic Gold Nanoparticles as Carrier for Anticancer Copper(I) Complexes: Loading and Release Studies for Biomedical Applications. Nanomaterials (Basel). 9 (5), 772 (2019).
  19. Lee, S. M., et al. Drug-loaded gold plasmonic nanoparticles for treatment of multidrug resistance in cancer. Biomaterials. 35 (7), 2272-2282 (2014).
  20. Dreaden, E. C., Alkilany, A. M., Huang, X., Murphy, C. J., El-Sayed, M. A. The golden age: gold nanoparticles for biomedicine. Chemical Society Reviews. 41 (7), 2740-2779 (2012).
  21. Wei, T., et al. Anticancer drug nanomicelles formed by self-assembling amphiphilic dendrimer to combat cancer drug resistance. Proceedings of the National Academy of Sciences of the United States of America. 112 (10), 2978-2983 (2015).
  22. Galluzzi, L., Buque, A., Kepp, O., Zitvogel, L., Kroemer, G. Immunological Effects of Conventional Chemotherapy and Targeted Anticancer Agents. Cancer Cell. 28 (6), 690-714 (2015).
  23. Muddineti, O. S., Ghosh, B., Biswas, S. Current trends in using polymer coated gold nanoparticles for cancer therapy. International Journal of Pharmaceutics. 484 (1-2), 252-267 (2015).
  24. Hu, W., et al. Methyl Orange removal by a novel PEI-AuNPs-hemin nanocomposite. Journal of Environmental Sciences. 53, 278-283 (2017).
  25. Gu, F. X., et al. Targeted nanoparticles for cancer therapy. Nano Today. 2 (3), 14-21 (2007).
  26. Srinivasarao, M., Galliford, C. V., Low, P. S. Principles in the design of ligand-targeted cancer therapeutics and imaging agents. Nature Reviews Drug Discovery. 14 (3), 203-219 (2015).
  27. Liu, Z., Shi, Y., Chen, Z., Duan, L., Wang, X. Current progress towards the use of aptamers in targeted cancer therapy. Chinese Science Bulletin (Chinese Version). 59 (14), 1267 (2014).
  28. Ghosh, P., Han, G., De, M., Kim, C. K., Rotello, V. M. Gold nanoparticles in delivery applications. Advanced Drug Delivery Reviews. 60 (11), 1307-1315 (2008).
  29. Vandghanooni, S., Eskandani, M., Barar, J., Omidi, Y. Antisense LNA-loaded nanoparticles of star-shaped glucose-core PCL-PEG copolymer for enhanced inhibition of oncomiR-214 and nucleolin-mediated therapy of cisplatin-resistant ovarian cancer cells. International Journal of Pharmaceutics. 573, 118729 (2020).
  30. Andghanooni, S., Eskandani, M., Barar, J., Omidi, Y. AS1411 aptamer-decorated cisplatin-loaded poly(lactic-co-glycolic acid) nanoparticles for targeted therapy of miR-21-inhibited ovarian cancer cells. Nanomedicine. 13 (21), 2729-2758 (2018).
  31. Palmieri, D., et al. Human anti-nucleolin recombinant immunoagent for cancer therapy. Proceedings of the National Academy of Sciences of the United States of America. 112 (30), 9418-9423 (2015).
  32. Pichiorri, F., et al. In vivo NCL targeting affects breast cancer aggressiveness through miRNA regulation. Journal of Experimental Medicine. 210 (5), 951-968 (2013).
  33. Hou, S., McCauley, L. K., Ma, P. X. Synthesis and erosion properties of PEG-containing polyanhydrides. Macromolecular Bioscience. 7 (5), 620-628 (2007).
  34. Nie, L., et al. Injectable Vaginal Hydrogels as a Multi-Drug Carrier for Contraception. Applied Sciences. 9 (8), 1638 (2019).
  35. Zou, P., Suo, J., Nie, L., Feng, S. Temperature-responsive biodegradable star-shaped block copolymers for vaginal gels. Journal of Materials Chemistry. 22 (13), 6316-6326 (2012).
  36. Etrych, T., Šubr, V., Laga, R., Říhová, B., Ulbrich, K. Polymer conjugates of doxorubicin bound through an amide and hydrazone bond: Impact of the carrier structure onto synergistic action in the treatment of solid tumours. European Journal of Pharmaceutical Sciences. 58, 1-12 (2014).
  37. Safari, F., Tamaddon, A. M., Zarghami, N., Abolmali, S., Akbarzadeh, A. Polyelectrolyte complexes of hTERT siRNA and polyethyleneimine: Effect of degree of PEG grafting on biological and cellular activity. Artificial Cells, Nanomedicine, and Biotechnology. 44 (6), 1561-1568 (2016).
check_url/61139?article_type=t

Play Video

Cite This Article
Nie, L., Sun, S., Sun, M., Zhou, Q., Zhang, Z., Zheng, L., Wang, L. Synthesis of Aptamer-PEI-g-PEG Modified Gold Nanoparticles Loaded with Doxorubicin for Targeted Drug Delivery. J. Vis. Exp. (160), e61139, doi:10.3791/61139 (2020).

View Video