Summary

Induktion von diffusen axonalen Hirnverletzungen bei Ratten basierend auf Rotationsbeschleunigung

Published: May 09, 2020
doi:

Summary

Dieses Protokoll validiert ein zuverlässiges, einfach durchzuführendes und reproduzierbares Nagetiermodell der diffusen Axonalverletzung (DAI), das weit verbreitete Schäden an weißer Materie ohne Schädelfrakturen oder Prellungen verursacht.

Abstract

Traumatische Hirnverletzungen (TBI) sind eine der Hauptursachen für Tod und Behinderung. Diffuse axonale Verletzungen (DAI) ist der vorherrschende Mechanismus der Verletzung bei einem großen Prozentsatz der TBI-Patienten, die stationär behandelt werden müssen. DAI beinhaltet weit verbreitete axonale Schäden durch Schüttel-, Rotations- oder Explosionsverletzungen, was zu schnellen axonalen Dehnungsverletzungen und sekundären axonalen Veränderungen führt, die mit einem lang anhaltenden Einfluss auf die funktionelle Wiederherstellung verbunden sind. Historisch gesehen waren experimentelle Modelle von DAI ohne Fokalverletzungen schwer zu entwerfen. Hier validieren wir ein einfaches, reproduzierbares und zuverlässiges Nagetiermodell von DAI, das weitverbreitete Schäden an weißer Materie ohne Schädelfrakturen oder Prellungen verursacht.

Introduction

Traumatische Hirnverletzungen (TBI) sind eine der Hauptursachen für Tod und Behinderung in den Vereinigten Staaten. TbIs tragen zu etwa 30% aller verletzungsbedingten Todesfällebei 1,2. Die Hauptursachen von TBI unterscheiden sich zwischen den Altersgruppen und umfassen Stürze, Hochgeschwindigkeitskollisionen beim Sport, vorsätzliche Selbstverletzung, Autounfälle und Übergriffe1,2,3.

Hirndiffuse axonale Verletzung (DAI) ist eine spezifische Art von TBI durch Rotationsbeschleunigung, Schütteln oder Explosion Verletzung des Gehirns infolge einer uneingeschränkten Kopfbewegung im Augenblick nach Derverletzung4,5,6,7,8induziert. DAI beinhaltet weit verbreitete axonale Schäden, die zu lang anhaltenden neurologischen Beeinträchtigungen führen, die mit schlechtem Ergebnis, belastenden Gesundheitskosten und einer 33-64% Sterblichkeitsrate1,2,4,5,9,10,11verbunden sind. Trotz signifikanter neuer erforschungder E-Krankheit von DAI, gab es keinen Konsens über die besten Behandlungsmöglichkeiten11,12,13,14.

In den letzten Jahrzehnten haben zahlreiche experimentelle Modelle versucht, verschiedene Aspekte von DAI11,12,15,16genau zu replizieren. Diese Modelle haben jedoch Einschränkungen angesichts der einzigartigen Darstellung von DAI im Vergleich zu anderen fokalen Verletzungen. Diese früheren Modelle verursachen nicht nur axonale Verletzungen in weißen Materieregionen, sondern führen auch zu fokalen Hirnverletzungen. Klinisch wird DAI von Mikroblutungen begleitet, die eine Hauptursache für Schäden an weißer Materie darstellen können.

Es wurde nur gezeigt, dass zwei Tiermodelle die wichtigsten klinischen Merkmale von DAI replizieren. Gennarelli und Kollegen produzierten 1982 das erste seitliche Kopfrotationsgerät, das die Rotationsbeschleunigung ohne Aufprallkopf benutzte, um mit DAI in einem nichtmenschlichen Primatenmodell15komaieren zu können. Dieses Primatenmodell verwendete eine kontrollierte Einzelrotation zur Beschleunigung und Verzögerung, um den Kopf innerhalb von 10-20 ms um 60° zu verdrängen. Diese Technik war in der Lage, bewusstseinsbeeinträchtigtes Bewusstsein und weit verbreitete axonale Schäden zu emulieren, die den Auswirkungen schwerer TBI ähnelten, die im menschlichen Gehirn beobachtet wurden. Primatenmodelle sind jedoch sehr teuer4,11,16. Basierend auf dem Vorgängermodell wurde 1994 ein Schweinemodell der Rotationsbeschleunigung sbrain injury (Ross et al.) mit ähnlichen Ergebnissen14entwickelt.

Diese beiden Tiermodelle, obwohl sie unterschiedliche Darstellungen typischer Pathologie produzierten, haben die Konzepte der DAI-Pathogenese stark erweitert. Schnelle Kopfrotation wird allgemein als die beste Methode zur Induktion von DAI akzeptiert, und Nagetiere bieten ein kostengünstigeres Modell für die schnellen Kopfrotationsstudien11,16. Hier validieren wir ein einfaches, reproduzierbares und zuverlässiges Nagetiermodell von DAI, das weitverbreitete Schäden an weißer Materie ohne Schädelfrakturen oder Prellungen verursacht. Dieses aktuelle Modell wird ein besseres Verständnis der Pathophysiologie von DAI und die Entwicklung wirksamerer Behandlungen ermöglichen.

Protocol

Die Versuche wurden im Anschluß an die Empfehlungen der Erklärungen von Helsinki und Tokio sowie der Leitlinien für die Verwendung von Versuchstieren der Europäischen Gemeinschaft durchgeführt. Die Experimente wurden vom Animal Care Committee der Ben-Gurion University of the Negev genehmigt. 1. Vorbereitung von Ratten auf das Experimentelle Verfahren HINWEIS: Wählen Sie erwachsene männliche Sprague-Dawley Ratten mit einem Gewicht von 300-350 g. Die …

Representative Results

Tabelle 1 veranschaulicht die Protokollzeitachse. Die Sterblichkeitsrate in diesem DAI-Modell betrug 0%. Ein Mann-Whitney-Test zeigte, dass das neurologische Defizit bei den 15 DAI-Ratten signifikant größer war als bei den 15 Scheinratten nach 48 Stunden nach Intervention (Mdn = 1 vs. 0), U = 22,5, p < 0,001, r = 0,78 (siehe Tabelle 2). Die Daten werden in Zahlen gemessen und als Median- und 25-75-Perzentilbereich dargestellt. Repräsentative Photomikroskope…

Discussion

Dieses Protokoll beschreibt ein Nagetiermodell von DAI. In DAI verursacht die Rotationsbeschleunigung im Gehirn einen Schereffekt, der axonale und biochemische Veränderungen auslöst, die in einem progressiven Prozess zum Verlust der axonalen Funktion führen. Sekundäre axonale Veränderungen werden durch eine schnelle axonale Dehnungsverletzung erzeugt und sind in Ihrem Ausmaß und Schweregradvariabel 4,5,10. Innerhalb von St…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Die Autoren danken Dr. Nathan Kleeorin (Department of Mechanical Engineering, Ben-Gurion University of the Negev) für seine Unterstützung bei den biomechanischen Messungen. Wir danken auch Professor Olena Severynovska, Maryna Kuscheriava, Maksym Kryvonosov, Daryna Yakumenko und Evgenia Goncharyk von der Abteilung für Physiologie, Fakultät für Biologie, Ökologie und Medizin, Oles Honchar Dnipro Universität, Dnipro, Ukraine für ihre Unterstützung und hilfreiche Beiträge zu unseren Diskussionen.

Materials

0.01 M sodium citrate SIGMA – ALDRICH
2.5% normal horse serum SIGMA – ALDRICH H0146 Liquid
4 % buffered formaldehyde solution
Anti-Amyloid Precursor Protein, C – terminal antibodyproduced in rabbit SIGMA – ALDRICH Lot 056M4867V
biotinylated secondary antibody Vector BA-1000-1.5 10 mM sodium phosphate, pH 7.8, 0.15 M NaCl, 0.08% sodium azide, 3 mg/ml bovine serum albumin
bone-cutting forceps
DAB Peroxidase (HRP) Substrate Kit (with Nickel), 3,3’-diaminobenzidine vector laboratory
embedding cassettes
ethanol 99.9 % ROMICAL Flammable Liquid
guillotine
Hematoxylin SIGMA – ALDRICH H3136-25G
Hydrogen peroxide solution Millipore 88597-100ML-F
Isofluran, USP 100% Piramamal Critical Care, Inc
Olympus BX 40 microscope Olympus
paraffine paraplast plus leica biosystem Tissue embedding medium
phosphate-buffered saline (PBS) SIGMA – ALDRICH P5368-10PAK Contents of one pouch, when dissolved in one liter of distilled or deionized water, will yield 0.01 M phosphate buffered saline (NaCl 0.138 M; KCl – 0.0027 M); pH 7.4, at 25 °C.
Streptavidin HRP ABCAM ab64269 Streptavidin-HRP for use with biotinylated secondary antibodies during IHC / immunohistochemistry.
xylene

References

  1. Faul, M., Wald, M. M., Xu, L., Coronado, V. G. Traumatic brain injury in the United States; emergency department visits, hospitalizations, and deaths, 2002-2006. US Government. , (2010).
  2. Taylor, C. A., Bell, J. M., Breiding, M. J., Xu, L. Traumatic Brain Injury-Related Emergency Department Visits, Hospitalizations, and Deaths – United States, 2007 and 2013. MMWR Surveillance Summaries. 66, 1-16 (2017).
  3. Peterson, A. B., Xu, L., Daugherty, J., Breiding, M. J. Surveillance report of traumatic brain injury-related emergency department visits, hospitalizations, and deaths, United States, 2014. US Government. , (2014).
  4. Su, E., Bell, M. Diffuse axonal injury. Translational Research in Traumatic Brain Injury. 57, 41 (2016).
  5. Hammoud, D. A., Wasserman, B. A. Diffuse axonal injuries: pathophysiology and imaging. Neuroimaging Clinics. 12, 205-216 (2002).
  6. Adams, J. H., Graham, D. I., Gennarelli, T. A., Maxwell, W. L. Diffuse axonal injury in non-missile head injury. Journal of Neurology, Neurosurgery, and Psychiatry. 54, 481-483 (1991).
  7. Slazinski, T., Johnson, M. C. Severe diffuse axonal injury in adults and children. Journal of Neuroscience Nursing. 26, 151-154 (1994).
  8. Gentleman, S. M., et al. Axonal injury: a universal consequence of fatal closed head injury. Acta Neuropathologica. 89, 537-543 (1995).
  9. Marehbian, J., Muehlschlegel, S., Edlow, B. L., Hinson, H. E., Hwang, D. Y. Medical Management of the Severe Traumatic Brain Injury Patient. Neurocritical Care. 27, 430-446 (2017).
  10. Adams, J. H., et al. Diffuse axonal injury in head injury: definition, diagnosis and grading. Histopathology. 15, 49-59 (1989).
  11. Xiao-Sheng, H., Sheng-Yu, Y., Xiang, Z., Zhou, F., Jian-ning, Z. Diffuse axonal injury due to lateral head rotation in a rat model. Journal of Neurosurgery. 93, 626-633 (2000).
  12. Ross, D. T., Meaney, D. F., Sabol, M. K., Smith, D. H., Gennarelli, T. A. Distribution of forebrain diffuse axonal injury following inertial closed head injury in miniature swine. Experimental Neurology. 126, 291-299 (1994).
  13. Bullock, R. Opportunities for neuroprotective drugs in clinical management of head injury. Journal of Emergency Medicine. 11, 23-30 (1993).
  14. Gennarelli, T. A. Mechanisms of brain injury. Journal of Emergency Medicine. 11, 5-11 (1993).
  15. Gennarelli, T. A., et al. Diffuse axonal injury and traumatic coma in the primate. Annals of Neurology. 12, 564-574 (1982).
  16. Xiaoshengi, H., Guitao, Y., Xiang, Z., Zhou, F. A morphological study of diffuse axonal injury in a rat model by lateral head rotation trauma. Acta Neurologica Belgica. 110, 49-56 (2010).
  17. Zlotnik, A., et al. beta2 adrenergic-mediated reduction of blood glutamate levels and improved neurological outcome after traumatic brain injury in rats. Journal of Neurosurgical Anesthesiology. 24, 30-38 (2012).
  18. Boyko, M., et al. An Alternative Model of Laser-Induced Stroke in the Motor Cortex of Rats. Biological Procedures Online. 21, 9 (2019).
  19. Boyko, M., et al. The neuro-behavioral profile in rats after subarachnoid hemorrhage. Brain Research. 1491, 109-116 (2013).
  20. Ma, J., Zhang, K., Wang, Z., Chen, G. Progress of Research on Diffuse Axonal Injury after Traumatic Brain Injury. Neural Plasticity. 2016, 9746313 (2016).
  21. Medana, I. M., Esiri, M. M. Axonal damage: a key predictor of outcome in human CNS diseases. Brain. 126, 515-530 (2003).
  22. Tang-Schomer, M. D., Johnson, V. E., Baas, P. W., Stewart, W., Smith, D. H. Partial interruption of axonal transport due to microtubule breakage accounts for the formation of periodic varicosities after traumatic axonal injury. Experimental Neurology. 233, 364-372 (2012).
  23. Johnson, V. E., Stewart, W., Smith, D. H. Traumatic brain injury and amyloid-beta pathology: a link to Alzheimer’s disease. Nature Reviews Neuroscience. 11, 361-370 (2010).
  24. Sherriff, F. E., Bridges, L. R., Sivaloganathan, S. Early detection of axonal injury after human head trauma using immunocytochemistry for beta-amyloid precursor protein. Acta Neuropathologica. 87, 55-62 (1994).
  25. Reichard, R. R., White, C. L., Hladik, C. L., Dolinak, D. Beta-amyloid precursor protein staining of nonaccidental central nervous system injury in pediatric autopsies. Journal of Neurotrauma. 20, 347-355 (2003).
  26. Gentleman, S. M., Nash, M. J., Sweeting, C. J., Graham, D. I., Roberts, G. W. Beta-amyloid precursor protein (beta APP) as a marker for axonal injury after head injury. Neuroscience Letters. 160, 139-144 (1993).
  27. Smith, D. H., Hicks, R., Povlishock, J. T. Therapy development for diffuse axonal injury. Journal of Neurotrauma. 30, 307-323 (2013).
  28. McKenzie, K. J., et al. Is beta-APP a marker of axonal damage in short-surviving head injury. Acta Neuropathologica. 92, 608-613 (1996).
  29. Wilkinson, A., Bridges, L., Sivaloganathan, S. Correlation of survival time with size of axonal swellings in diffuse axonal injury. Acta Neuropathologicaogica. 98, 197-202 (1999).
  30. Thompson, H. J., et al. Lateral fluid percussion brain injury: a 15-year review and evaluation. Journal of Neurotrauma. 22, 42-75 (2005).
  31. Alder, J., Fujioka, W., Lifshitz, J., Crockett, D. P., Thakker-Varia, S. Lateral fluid percussion: model of traumatic brain injury in mice. Journal of Visualized Experiments. , e3063 (2011).
  32. Povlishock, J., Marmarou, A., McIntosh, T., Trojanowski, J., Moroi, J. Impact acceleration injury in the rat: evidence for focal axolemmal change and related neurofilament sidearm alteration. Journal of Neuropathology & Experimental Neurology. 56, 347-359 (1997).
  33. Heath, D. L., Vink, R. Impact acceleration-induced severe diffuse axonal injury in rats: characterization of phosphate metabolism and neurologic outcome. Journal of Neurotrauma. 12, 1027-1034 (1995).
  34. Lighthall, J. W. Controlled cortical impact: a new experimental brain injury model. Journal of Neurotrauma. 5, 1-15 (1988).
  35. Palmer, A. M., et al. Traumatic brain injury-induced excitotoxicity assessed in a controlled cortical impact model. Journal of Neurochemistry. 61, 2015-2024 (1993).
  36. Hamm, R. J., et al. Cognitive deficits following traumatic brain injury produced by controlled cortical impact. Journal of Neurotrauma. 9, 11-20 (1992).
  37. Nyanzu, M., et al. Improving on Laboratory Traumatic Brain Injury Models to Achieve Better Results. International Journal of Medical Sciences. 14, 494-505 (2017).
  38. Xiong, Y., Mahmood, A., Chopp, M. Animal models of traumatic brain injury. Nature Reviews Neuroscience. 14, 128-142 (2013).
  39. Lighthall, J. W., Dixon, C. E., Anderson, T. E. Experimental models of brain injury. Journal of Neurotrauma. 6, 83-97 (1989).
  40. Meaney, D. F., et al. Modification of the cortical impact model to produce axonal injury in the rat cerebral cortex. Journal of Neurotrauma. 11, 599-612 (1994).
check_url/61198?article_type=t

Play Video

Cite This Article
Frank, D., Melamed, I., Gruenbaum, B. F., Grinshpun, J., Kuts, R., Shvartsur, R., Azab, A. N., Assadi, M. H., Vinokur, M., Boyko, M. Induction of Diffuse Axonal Brain Injury in Rats Based on Rotational Acceleration. J. Vis. Exp. (159), e61198, doi:10.3791/61198 (2020).

View Video