Summary

观察活胰腺组织切片中的胰岛功能和胰岛-免疫细胞相互作用

Published: April 12, 2021
doi:

Summary

本研究介绍了活胰腺组织切片在胰岛生理学和胰岛免疫细胞相互作用研究中的应用。

Abstract

活的胰腺组织切片允许在完整的胰岛微环境中研究胰岛的生理学和功能。切片由嵌入琼脂糖中的活人和小鼠胰腺组织制备,并使用振动切片机切割。这种方法允许组织保持活力和功能,除了保留潜在的病理,如1型(T1D)和2型糖尿病(T2D)。切片方法通过维持构成胰腺内分泌和外分泌组织的复杂结构和各种细胞间相互作用,为胰腺的研究提供了新的方向。该协议展示了如何对胰腺切片内的活内源性免疫细胞进行染色和延时显微镜检查,以及胰岛生理学评估。此外,可以使用主要的组织相容性复合物多聚体试剂来改进这种方法,以识别胰岛细胞抗原特异性的免疫细胞群。

Introduction

胰腺受累是胰腺炎、T1D 和 T2D123 等疾病的特征性特征。孤立胰岛功能的研究通常涉及将胰岛从周围环境中移除4。开发了活胰腺组织切片方法,以允许研究胰腺组织,同时保持完整的胰岛微环境并避免使用应激的胰岛分离程序567。来自人类供体组织的胰腺组织切片已被成功用于研究T1D,并且除了免疫细胞浸润之外,还显示出β细胞丢失和功能障碍的过程8910111213。活胰腺组织切片法可应用于小鼠和人胰腺组织568。来自器官捐献者组织的人类胰腺组织切片是通过与糖尿病胰腺器官捐献者网络(nPOD)合作获得的。小鼠切片可以从各种不同的小鼠品系中生成。

该协议将侧重于非肥胖糖尿病重组激活基因-1-null(NOD.Rag1-/-) 和 T 细胞受体转基因 (AI4) (NOD.Rag1-/-.AI4 α/β)小鼠品系。点头。Rag1-/- 小鼠由于重组激活基因1(Rag114的破坏而无法发育T细胞和B细胞。点头。Rag1-/-.AI4 α/β 小鼠被用作加速型1型糖尿病的模型,因为它们产生靶向胰岛素表位的单个T细胞克隆,导致胰岛持续浸润和快速疾病发展15。此处的方案描述了通过应用共聚焦显微镜方法使用活人胰腺切片进行功能和免疫学研究的程序。本文描述的技术包括活力评估,胰岛鉴定和定位,胞质Ca2 + 记录,以及免疫细胞群的染色和鉴定。

Protocol

注意:所有使用小鼠的实验方案均已获得佛罗里达大学动物护理和使用委员会(201808642)的批准。来自两性组织供体的人类胰腺切片是通过佛罗里达大学糖尿病胰腺器官供体网络(nPOD)组织库获得的。根据器官捐赠法律法规,与nPOD合作的认证器官采购组织从尸体器官捐献者身上摘取了人类胰腺,并被佛罗里达大学机构审查委员会(IRB No. 392-2008)归类为”非人类受试者”,免除了同意的需要。专门?…

Representative Results

该协议将产生适合功能研究和免疫细胞记录的活胰腺组织切片。明场和反射光下的切片外观如图 1A,B所示。如前所述,胰岛可以使用反射光在切片中找到,因为它们的颗粒度增加,由于其胰岛素含量而发生(图1C),并且在使用反射光时与背景组织相比被清楚地观察到。应在切片生成后评估生存能力,如果超过20%的胰岛不可行,则不应记?…

Discussion

该协议的目的是解释胰腺切片的产生以及在功能和免疫学研究中使用切片所需的程序。使用活胰腺切片有很多好处。然而,有几个关键步骤对于组织在所描述的实验方案期间保持活力和有用至关重要。必须快速工作。应尽量减少注射胰腺和在振动切片机上产生切片之间的时间长度,以保持组织的活力。通过在切片之前将胰腺保持在冷ECS中,而不是室温ECS,还可以提高生存能力。重要的是,切片不?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作由NIH拨款R01 DK123292,T32 DK108736,UC4 DK104194,UG3 DK122638和P01 AI042288资助。这项研究是在糖尿病胰腺器官捐献者网络(nPOD;RRID:SCR_014641),由JDRF(nPOD:5-SRA-2018-557-Q-R)和Leona M. & Harry B. Helmsley慈善信托基金(Grant #2018PG-T1D053)赞助的1型糖尿病合作研究项目。所表达的内容和观点是作者的责任,并不一定反映nPOD的官方观点。与nPOD合作提供研究资源的器官采购组织(OPO)列在 http://www.jdrfnpod.org/for-partners/npod-partners/。感谢佛罗里达大学的Kevin Otto博士提供用于生成小鼠切片的振动切片机。

Materials

#3 Style Scalpel Handle Fisherbrand 12-000-163
1 M HEPES Fisher Scientific BP299-100 HEPES Buffer, 1M Solution
10 cm Untreated Culture Dish Corning 430591
10 mL Luer-Lok Syringe BD 301029 BD Syringe with Luer-Lok Tips
27 G Needle BD BD 305109 BD General Use and PrecisionGlide Hypodermic Needles
35 mm coverglass-bottom Petri dish Ibidi 81156 µ-Dish 35 mm, high
50 mL syringe BD 309653
8-well chambered coverglass Ibidi 80826 µ-Slide 8 Well
APC anti-mouse CD8a antibody Biolegend 100712
BSA Fisher Scientific 199898
Calcium chloride Sigma C5670 CaCl2
Calcium chloride dihydrate Sigma C7902 CaCl2 (dihydrate)
Compact Digital Rocker Thermo Fisher Scientific 88880020
Confocal laser-scanning microscope Leica SP8 Pinhole = 1.5-2 airy units; acquired with 10x/0.40 numerical aperture HC PL APO CS2 dry and 20x/0.75 numerical aperture HC PL APO CS2 dry objectives at 512 × 512 pixel resolution
D-(+)-Glucose Sigma G7021 C6H12O6
ddiH2O
Dithizone Sigma-Aldrich D5130-10G
DMSO Invitrogen D12345 Dimethyl sulfoxide
Ethanol Decon Laboratories 2805
Falcon 35 mm tissue culture dish Corning 353001 Falcon Easy-Grip Tissue Culture Dishes
FBS Gibco 10082147
Feather No. 10 Surgical Blade Electron Microscopy Sciences 7204410
fluo-4-AM Invitrogen F14201 cell-permeable Ca2+ indicator
Gel Control Super Glue Loctite 45198
Graefe Forceps Fine Science Tools 11049-10
Hardened Fine Scissors Fine Science Tools 14090-09
HBSS Gibco 14025092 Hanks Balanced Salt Solution
HEPES Sigma H4034 C8H18N2O4S
Ice bucket Fisherbrand 03-395-150
Isoflurane Patterson Veterinary NDC 14043-704-05
Johns Hopkins Bulldog Clamp Roboz Surgical Store RS-7440  Straight; 500-900 Grams Pressure; 1.5" Length
Kimwipes Kimberly-Clark Professional 34705 Kimtech Science™ Kimwipes™ Delicate Task Wipers, 2-Ply
LIVE/DEAD Viability/Cytotoxicity Kit Invitrogen L3224 This kit contains the calcein-AM live cell dye.
Low glucose DMEM Corning 10-014-CV
Magnesium chloride hexahydrate Sigma M9272 MgCl2 (hexahydrate)
Magnesium sulfate heptahydrate Sigma M2773 MgSO4 (heptahydrate)
Magnetic Heated Platform Warner Instruments PM-1 Platform for imaging chamber for dynamic stimulation recordings
Microwave GE JES1460DSWW
Nalgene Syringe Filter Thermo Fisher Scientific 726-2520
No.4 Paintbrush Michaels 10269140
Open Diamond Bath Imaging Chamber Warner Instruments RC-26 Imaging chamber for dynamic stimulation recordings
Oregon Green 488 BAPTA-1-AM Invitrogen O6807 cell-permeable Ca2+ indicator
Overnight imaging chamber Okolab H201-LG
PBS Thermo Fisher Scientific 20012050 To make agarose for slice generation
PE-labeled insulin tetramer Emory Tetramer Research Core sequence YAIENYLEL
Penicillin Streptomycin Gibco 15140122
Potassium chloride Sigma P5405 KCl
Potassium phosphate monobasic Sigma P5655 KH2PO4
Razor Blades Electron Microscopy Sciences 71998 For Vibratome; Double Edge Stainless Steel, uncoated
RPMI 1640 Gibco 11875093
SeaPlaque low melting-point agarose Lonza 50101 To make agarose for slice generation
Slice anchor Warner Instruments 64-1421
Slice anchor (dynamic imaging) Warner Instruments 640253 Slice anchor for dynamic imaging chamber
Sodium bicarbonate Sigma S5761 NaHCO3
Sodium chloride Sigma S5886 NaCl
Sodium phosphate monohydrate Sigma S9638 NaH2PO4 (monohydrate)
Soybean Trypsin Inhibitor Sigma T6522-1G Trypsin inhibitor from Glycine max (soybean)
Stage Adapter Warner Instruments SA-20MW-AL To fit imaging chamber for dynamic stimulation recordings on the microscope stage
Stage-top incubator Okolab H201
Stereoscope Leica IC90 E MSV266
SYTOX Blue Dead Cell Stain Invitrogen S34857 blue-fluorescent nucleic acid stain
Transfer Pipet Falcon 357575 Falcon™ Plastic Disposable Transfer Pipets
Valve Control System Warner Instruments VCS-8 System for dynamic stimulation recordings
Vibratome VT1000 S Leica VT1000 S
Water bath Fisher Scientific FSGPD02 Fisherbrand Isotemp General Purpose Deluxe Water Bath GPD 02

References

  1. Uc, A., Fishman, D. S. Pancreatic disorders. Pediatric Clinics of North America. 64 (3), 685-706 (2017).
  2. Bluestone, J. A., Herold, K., Eisenbarth, G. Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature. 464 (7293), 1293-1300 (2010).
  3. Taylor, R. Type 2 diabetes: etiology and reversibility. Diabetes Care. 36 (4), 1047-1055 (2013).
  4. Meier, R. P., et al. Islet of Langerhans isolation from pediatric and juvenile donor pancreases. Transplant International. 27 (9), 949-955 (2014).
  5. Marciniak, A., et al. Using pancreas tissue slices for in situ studies of islet of Langerhans and acinar cell biology. Nature Protocols. 9 (12), 2809-2822 (2014).
  6. Panzer, J. K., Cohrs, C. M., Speier, S. Using pancreas tissue slices for the study of islet physiology. Methods in Molecular Biology. 2128, 301-312 (2020).
  7. Speier, S., Rupnik, M. A novel approach to in situ characterization of pancreatic beta-cells. Pflugers Archive. 446 (5), 553-558 (2003).
  8. Panzer, J. K., et al. Pancreas tissue slices from organ donors enable in situ analysis of type 1 diabetes pathogenesis. JCI Insight. 5 (8), 134525 (2020).
  9. Dolai, S., et al. Pancreatitis-induced depletion of syntaxin 2 promotes autophagy and increases basolateral exocytosis. Gastroenterology. 154 (6), 1805-1821 (2018).
  10. Dolai, S., et al. Pancreas-specific SNAP23 depletion prevents pancreatitis by attenuating pathological basolateral exocytosis and formation of trypsin-activating autolysosomes. Autophagy. , 1-14 (2020).
  11. Qadir, M. M. F., et al. Long-term culture of human pancreatic slices as a model to study real-time islet regeneration. Nature Communications. 11 (1), 3265 (2020).
  12. Cohrs, C. M., et al. Dysfunction of persisting β cells is a key feature of early type 2 diabetes pathogenesis. Cell Reports. 31 (1), 107469 (2020).
  13. Liang, T., et al. Ex vivo human pancreatic slice preparations offer a valuable model for studying pancreatic exocrine biology. Journal of Biological Chemistry. 292 (14), 5957-5969 (2017).
  14. Shultz, L. D., Ishikawa, F., Greiner, D. L. Humanized mice in translational biomedical research. Nat Reviews. Immunology. 7 (2), 118-130 (2007).
  15. Lamont, D., et al. Compensatory mechanisms allow undersized anchor-deficient class I MHC ligands to mediate pathogenic autoreactive T cell responses. Journal of Immunology. 193 (5), 2135-2146 (2014).
  16. Fish, R., Danneman, P. J., Brown, M., Karas, A. . Anesthesia and analgesia in laboratory animals. , (2011).
  17. Clark, S. A., Borland, K. M., Sherman, S. D., Rusack, T. C., Chick, W. L. Staining and in vitro toxicity of dithizone with canine, porcine, and bovine islets. Cell Transplantation. 3 (4), 299-306 (1994).
  18. Schindelin, J., et al. Fiji: an open-source platform for biological-image analysis. Nature Methods. 9 (7), 676-682 (2012).
  19. Monette, R., Small, D. L., Mealing, G., Morley, P. A fluorescence confocal assay to assess neuronal viability in brain slices. Brain Research Protocols. 2 (2), 99-108 (1998).
  20. Gál, E., et al. A novel in situ approach to studying pancreatic ducts in mice. Frontiers in Physiology. 10, 938 (2019).
  21. Stožer, A., Dolenšek, J., Rupnik, M. S. Glucose-stimulated calcium dynamics in islets of Langerhans in acute mouse pancreas tissue slices. PloS One. 8 (1), 54638 (2013).
  22. Stožer, A., et al. Functional connectivity in islets of Langerhans from mouse pancreas tissue slices. PLoS Computational Biology. 9 (2), 1002923 (2013).
  23. Früh, E., Elgert, C., Eggert, F., Scherneck, S., Rustenbeck, I. Glucagonotropic and glucagonostatic effects of KATP channel closure and potassium depolarization. Endocrinology. 162 (1), 136 (2021).
  24. Satin, L. S. New mechanisms for sulfonylurea control of insulin secretion. Endocrine. 4 (3), 191-198 (1996).
  25. Ren, J., et al. Slow oscillations of KATP conductance in mouse pancreatic islets provide support for electrical bursting driven by metabolic oscillations. American Journal of Physiology-Endocrinology and Metabolism. 305 (7), 805-817 (2013).
  26. Marciniak, A., Selck, C., Friedrich, B., Speier, S. Mouse pancreas tissue slice culture facilitates long-term studies of exocrine and endocrine cell physiology in situ. PLoS One. 8 (11), 78706 (2013).
  27. Dzhagalov, I. L., Melichar, H. J., Ross, J. O., Herzmark, P., Robey, E. A. Two-photon imaging of the immune system. Current Protocols in Cytometry. , (2012).
check_url/62207?article_type=t

Play Video

Cite This Article
Huber, M. K., Drotar, D. M., Hiller, H., Beery, M. L., Joseph, P., Kusmartseva, I., Speier, S., Atkinson, M. A., Mathews, C. E., Phelps, E. A. Observing Islet Function and Islet-Immune Cell Interactions in Live Pancreatic Tissue Slices. J. Vis. Exp. (170), e62207, doi:10.3791/62207 (2021).

View Video