Summary

Создание упрощенной трехмерной модели «кожа на чипе» на микрообрабатываемой микрофлюидной платформе

Published: May 17, 2021
doi:

Summary

Здесь мы представляем протокол для создания трехмерной упрощенной и недифференцированной модели кожи с использованием микрообрабатываемой микрофлюидной платформы. Параллельный поточный подход позволяет наживать in situ кожный компартмент для посева эпителиальных клеток сверху, управляемых шприцевыми насосами.

Abstract

Эта работа представляет собой новую, экономически эффективную и надежную микрофлюидную платформу с потенциалом для создания сложных многослойных тканей. В качестве доказательства концепции была смоделирована упрощенная и недифференцированная кожа человека, содержащая дермальный (стромальный) и эпидермальный (эпителиальный) компартмент. Для достижения этой цели было разработано универсальное и надежное устройство на основе винила, разделенное на две камеры, преодолевающее некоторые недостатки, присутствующие в микрофлюидных устройствах на основе полидиметилсилоксана (PDMS) для биомедицинских применений, таких как использование дорогостоящего и специализированного оборудования или поглощение небольших гидрофобных молекул и белков. Кроме того, был разработан новый метод, основанный на параллельном потоке, позволяющий осуществлять осаждение in situ как кожного, так и эпидермального компартментов. Конструкция кожи состоит из фибриновой матрицы, содержащей первичные фибробласты человека и монослой из увековеченных кератиноцитов, посеянных сверху, который впоследствии поддерживается в условиях динамической культивации. Эта новая микрофлюидная платформа открывает возможность моделировать кожные заболевания человека и экстраполировать метод для генерации других сложных тканей.

Introduction

В последнее время были достигнуты успехи в разработке и производстве моделей кожи человека in vitro для анализа токсичности косметических и фармацевтических продуктов1. Исследователи в фармацевтической и коже промышленности используют животных, мышей которых мышей являются наиболее распространенными, для тестирования своих продуктов2,3,4,5. Однако тестирование продуктов на животных не всегда предсказывает реакцию у людей, что часто приводит к отказу лекарств или неблагоприятным последствиям у людей и, следовательно, к экономическим потерям5,6. Великобритания была первой страной, которая запретила использование животных для косметического тестирования в 1998 году. Позже, в 2013 году, ЕС запретил тестирование и апробацию косметики на животных (Регламент ЕС по косметике No 1223/2009)7.

Этот запрет также рассматривается другими странами, такими как «Закон о гуманистической косметике» в США8. В дополнение к этическим соображениям, анатомические различия между кожей животных и человека делают тестирование на животных трудоемким, дорогостоящим и часто неэффективным. Кроме того, ожидается, что к 2025 году объем мирового рынка токсикологических испытаний in vitro достигнет 26,98 млрд долларовСША9. По этим причинам существует необходимость в разработке новых методов и альтернатив для этих исследований in vitro, таких как биоинженерные модели кожи человека, которые позволяют тестировать безопасность и токсическое воздействие косметики и лекарств без использования животных.

Существует два различных вида коммерчески доступных, in vitro, моделей человеческой кожи. Первый тип состоит из стратифицированных эпидермальных эквивалентов, содержащих несколько слоев дифференцирующих кератиноцитов, которые высеиваются на разных материалах. Некоторые из них были одобрены Организацией экономического сотрудничества и развития (ОЭСР) и одобрены (Европейским центром валидации альтернативных методов (ECVAM) для тестирования на коррозию и раздражение кожи, таких как EpiDerm или SkinEthic10,11,12. Второй тип представляют собой полнокожные эквиваленты со слоем дифференцированных кератиноцитов человека, посеянных на трехмерном (3D) каркасе, который содержит фибробласты, такие как T-Skin и EpiDerm-FT. Однако эти модели культивируются в статических условиях, что делает их неспособными точно представлять физиологические условия человека.

Недавний интерес был сосредоточен на создании in vitro 3D-моделей кожи в форматах клеточной культуры-вставки (CCI) с динамической перфузией13,14,15,16,17,18,19. Тем не менее, эти системы не могут рассматриваться stricto sensu как микрофлюидные «кожа на чипах» в соответствии с их классическим определением в этой области. Определение Ингбера для органов на чипе гласит, что орган должен быть помещен внутрь микрофлюидных каналов, что является условием, что только несколько устройств удовлетворяют20,21. Skin-on-chips до сих пор моделировали в основном простой эпителий в виде одноклеточных слоев и/или слоев кожных клеток, разделенных пористой мембраной22,23. Хотя были достигнуты некоторые успехи в моделировании кожи в микрофлюидных системах16,24,в настоящее время нет литературы, показывающей систему «орган на чипе», которая соответствует определению Ингбера, способная производить многослойную кожу in situ и включающая как эпителиальные, так и стромальные компоненты.

В этой работе представлена новая, экономичная, надежная микрофлюидная платформа на основе винила для приложений «кожа на чипе». Данная платформа была изготовлена путем микрообработки, что обеспечивает большую простоту в процессе изготовления, а также повышенную гибкость и универсальность в компоновке устройства, преодолевая некоторые ограничения PDMS25. Также был разработан способ введения упрощенной конструкции обшивки через параллельный поток, управляемый шприцевыми насосами. Параллельный поток позволяет двум жидкостям с очень разной вязкостью (в данном случае буферу и прегелю фибрина) перфузиться через канал без смешивания друг с другом. В качестве доказательства концепции в устройство была введена дермо-эпидермальная конструкция, содержащая фибробласты, встроенные в фибриновую матрицу, имитируя дерму, поверх которой был загружен монослой кератиноцитов для эмуляции недифференцированного эпидермиса. Высота кожного отсека может модулироваться путем изменения скорости потока. Главной новинкой этой работы, по сравнению с ранее описанными моделями22,26,27,28,29,является разработка 3D-конструкции внутри микрокамеры с помощью микрофлюидики. Хотя в этой статье представлена упрощенная недифференцированная кожа, долгосрочная цель состоит в том, чтобы создать и охарактеризовать полностью дифференцированную конструкцию кожи, чтобы продемонстрировать ее жизнеспособность и функциональность для целей лекарственного и косметического тестирования.

Protocol

1. Конструкция чипа и параметры микрообработки Проектирование микрофлюидных слоев чипа с помощью программного обеспечения для проектирования с открытым исходным кодом FreeCAD; размеры каналов приведены в таблице 1. Включите в конструкцию четыре отверстия диаметром 2,54 мм, ч?…

Representative Results

Спроектированный чип состоит из двух жидкостных камер, разделенных мембраной PC размером пор 5 мкм, которая позволяет расти клетке, позволяя проходить молекулам, способствующим росту, из нижней камеры. Верхняя камера удерживает тканевую конструкцию, в данном случае монослой гКЦ на гидр?…

Discussion

Мотивацией для разработки этого метода было желание моделировать кожные заболевания и изучать эффекты новых и инновационных методов лечения на высокопроизводительной платформе. На сегодняшний день эта лаборатория производит эти дермо-эпидермальные эквиваленты путем литья — вручну…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Мы искренне благодарим д-ра Хавьера Родригеса, д-ра Марию Луизу Лопес, Карлоса Мателлана и Хуана Франсиско Родригеса за очень полезные предложения, обсуждения и/или предварительные данные. Мы также благодарим Серхио Фернандеса, Педро Эррероса и Лару Штольценбург за вклад в этот проект. Особая благодарность доктору Марте Гарсия за HFB и hKCs с маркировкой GFP. Наконец, мы отмечаем прекрасную техническую помощь Гильермо Вискаино и Анжелики Корраль. Эта работа была поддержана «Программой деятельности I+D entre Grupos de Investigación de la Comunidad de Madrid», проект S2018/BAA-4480, Biopieltec-CM. Эта работа была также поддержана “Программой превосходства”, проектом EPUC3M03, CAM. CONSEJERÍA DE EDUCACIÓN E INVESTIGACIÓN.

Materials

Amchafibrin Rottafarm Tranexamic acid
Antibiotic/antimycotic Thermo Scientific HyClone
Calcium chloride Sigma Aldrich
Culture plates Fisher
DMEM Invitrogen Life Technologies
Double-sided tape vynil ATP Adhesive Systems GM 107CC, 12 µm thick
Edge plotter Brother Scanncut CM900
FBS Thermo Scientific HyClone
Fibrinogen Sigma Aldrich Extracted from human plasma
Glass slide Thermo Scientific
GFP-Human dermal fibroblasts Primary. Gift from Dr. Marta García
H2B-GFP-HaCaT cell line ATCC Immortalized keratinocytes. Gift from Dr. Marta García
Live/dead kit Invitrogen
PBS Sigma Aldrich
Polycarbonate membrane Merk TM 5 µm pore size
Polydimethylsiloxane Dow Corning Sylgard 184
Sodium chloride Sigma Aldrich
Syringes Terumo 5 mL
Thrombin Sigma Aldrich 10 NIH/vial
Transparent adhesive vinyl Mactac JT 8500 CG-RT, 95 µm thick
Trypsin/EDTA Sigma Aldrich
Tubing IDEX Teflon, 1/16” OD, 0.020” ID

References

  1. McNamee, P., et al. A tiered approach to the use of alternatives to animal testing for the safety assessment of cosmetics: Eye irritation. Regulatory Toxicology and Pharmacology. 54 (2), 197-209 (2009).
  2. Mathes, S. H., Ruffner, H., Graf-Hausner, U. The use of skin models in drug development. Advanced Drug Delivery Reviews. 69-70, 81-102 (2014).
  3. Abd, E., et al. Skin models for the testing of transdermal drugs. Clinical Pharmacology: Advances and Applications. 8, 163-176 (2016).
  4. Flaten, G. E., et al. In vitro skin models as a tool in optimization of drug formulation. European Journal of Pharmaceutical Sciences. 75, 10-24 (2015).
  5. Avci, P., et al. Animal models of skin disease for drug discovery. Expert Opinion on Drug Discovery. 8 (3), 331-355 (2014).
  6. Mak, I. W., Evaniew, N., Ghert, M. Lost in translation: animal models and clinical trials in cancer treatment. American Journal of Translational Research. 6 (2), 114-118 (2014).
  7. Pronko, P. P., VanRompay, P. A., Zhang, Z., Nees, J. A. Pronko et al. Reply. Physical Review Letters. 86 (7-12), 1387 (2001).
  8. H.R.2858 – Humane Cosmetics Act. 114th Congress Available from: https://congress.gov/bill/114th-congress/house-bill/2858 (2016)
  9. . Global in-vitro toxicology testing market report: size, share & trends analysis 2014-2015 Available from: https://www.prnewswire.com/news-releases/global-in-vitro-toxicology-testing-market-report-size-share–trends-analysis-2014-2025-300704958.html (2018)
  10. Zhang, Z., Michniak-Kohn, B. B. Tissue engineered human skin equivalents. Pharmaceutics. 4 (1), 26-41 (2012).
  11. OECD. In vitro skin corrosion: reconstructed human epidermis (RhE) test method. Test Guideline No.431. OECD Guideline for Testing of Chemicals. , (2019).
  12. Almeida, A., Sarmento, B., Rodrigues, F. Insights on in vitro models for safety and toxicity assessment of cosmetic ingredients. International Journal of Pharmaceutics. 519 (1-2), 178-185 (2017).
  13. vanden Broek, L. J., Bergers, L. I. J. C., Reijnders, C. M. A., Gibbs, S. Progress and future Prospectives in Skin-on-Chip Development with Emphasis on the use of Different Cell Types and Technical Challenges. Stem Cell Reviews and Reports. 13 (3), 418-429 (2017).
  14. Ataç, B., et al. Skin and hair on-a-chip: In vitro skin models versus ex vivo tissue maintenance with dynamic perfusion. Lab on a Chip. 13 (18), 3555-3561 (2013).
  15. Abaci, H. E., Gledhill, K., Guo, Z., Christiano, A. M., Shuler, M. L. Pumpless microfluidic platform for drug testing on human skin equivalents. Lab on a Chip. 15 (3), 882-888 (2015).
  16. Wu, R., et al. Full-thickness human skin-on-chip with enhanced epidermal morphogenesis and barrier function. Materials Today. 21 (4), 326-340 (2017).
  17. Materne, E. -. M., et al. The multi-organ chip – a microfluidic platform for long-term multi-tissue coculture. Journal of Visualized Experiments: JoVE. (98), e52526 (2015).
  18. Schimek, K., et al. Bioengineering of a full-thickness skin equivalent in a 96-well insert format for substance permeation studies and organ-on-a-chip applications. Bioengineering. 5 (2), 43 (2018).
  19. Alberti, M., et al. Multi-chamber microfluidic platform for high-precision skin permeation testing. Lab on a Chip. 17, 1625-1634 (2017).
  20. Bhatia, S. N., Ingber, D. E. Microfluidic organs-on-chips. Nature BIotechnology. 32 (8), 760-772 (2014).
  21. Huh, D., Hamilton, G. A., Ingber, D. E. From 3D cell culture to organs-on-chips. Trends in Cell Biology. 21 (12), 745-754 (2011).
  22. Wufuer, M., et al. Skin-on-a-chip model simulating inflammation, edema and drug-based treatment. Scientific Reports. 6, 37471 (2016).
  23. Ramadana, Q., Ting, F. C. W. In vitro micro-physiological immune-competent model of the human skin. Lab on a Chip. 16, 1899-1908 (2016).
  24. Kim, K., Jeon, H. M., Choi, K. C., Sung, G. Y. Testing the effectiveness of Curcuma longa leaf extract on a skin equivalent using a pumpless skin-on-a-chip model. International Journal of Molecular Sciences. 21 (11), 3898 (2020).
  25. Halldorsson, S., Lucumi, E., Gómez-Sjöberg, R., Fleming, R. M. T. Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices. Biosensors and Bioelectronics. 63, 218-231 (2015).
  26. Huh, D., Matthews, B. D., Mammoto, A., Montoya-Zavala, M., Hsin, H. Y. Reconstituting organ-level lung functions on a chip. Science. 328 (5986), 1662-1668 (2010).
  27. Huh, D. A human disease model of drug toxicity – induced pulmonary edema in a lung-on-a-chip microdevice. Scientific Translational Medicine. 4 (159), (2012).
  28. Beckwitt, C. H., et al. Liver ‘ organ on a chip ‘. Experimental Cell Research. 363 (1), 15-25 (2018).
  29. Poceviciute, R., Ismagilov, R. F. Human-gut-microbiome on a chip. Nature Biomedical Engineering. 3 (7), 500-501 (2019).
  30. Kanda, T., Sullivan, K. F., Wahl, G. M. Histone-GFP fusion protein enables sensitive analysis of chromosome dynamics in living mammalian cells. Current Biology. 8 (7), 377-385 (1998).
  31. Escámez, M. J., et al. Assessment of optimal virus-mediated growth factor gene delivery for human cutaneous wound healing enhancement. Journal of Investigative Dermatology. 128 (6), 1565-1575 (2008).
  32. Llames, S. G., et al. Human plasma as a dermal scaffold for the generation of a completely autologous bioengineered skin. Transplantation. 77 (3), 350-355 (2004).
  33. Llames, S., et al. Clinical results of an autologous engineered skin. Cell Tissue Bank. 7 (1), 47-53 (2006).
  34. Cubo, N., Garcia, M., del Cañizo, J. F., Velasco, D., Jorcano, J. L. 3D bioprinting of functional human skin: production and in vivo analysis. Biofabrication. 9 (1), 015006 (2016).
  35. Mori, N., Morimoto, Y., Takeuchi, S. Skin integrated with perfusable vascular channels on a chip. Biomaterials. 116, 48-56 (2017).
  36. Kim, H. J., Li, H., Collins, J. J., Ingber, D. E. Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip. Proceedings of the National Academy of Sciences of the United States of America. 113 (1), 7-15 (2016).
  37. Shah, P., et al. A microfluidics-based in vitro model of the gastrointestinal human-microbe interface. Nature Communications. 7, 11535 (2016).
  38. Marx, U., et al. Human-on-a-chip’ developments: A translational cuttingedge alternative to systemic safety assessment and efficiency evaluation of substances in laboratory animals and man. Alternatives to Laboratory Animals. 40 (5), 235-257 (2012).
  39. Bein, A., et al. Microfluidic organ-on-a-chip models of human intestine. Cellular and Molecular Gastroenterology and Hepatology. 5 (4), 659-668 (2018).
  40. Bennet, D., Estlack, Z., Reid, T., Kim, J. A microengineered human corneal epithelium-on-a-chip for eye drops mass transport evaluation. Lab on a Chip. 18, 1539-1551 (2018).
  41. Kim, H. J., Huh, D., Hamilton, G., Ingber, D. E. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab on a chip. 12, 2165-2174 (2012).
  42. Kim, H. J., Ingber, D. E. Gut-on-a-chip microenvironment induces human intestinal cells to undergo villus differentiation. Integrative Biology. 5 (9), 1130-1140 (2013).
  43. O’Neill, A. T., Monteiro-Riviere, N. A., Walker, G. M. Characterization of microfluidic human epidermal keratinocyte culture. Cytotechnology. 56 (3), 197-207 (2008).
  44. Ren, K., Chen, Y., Wu, H. New materials for microfluidics in biology. Current Opinion in Biotechnology. 25, 78-85 (2014).
check_url/62353?article_type=t

Play Video

Cite This Article
Risueño, I., Valencia, L., Holgado, M., Jorcano, J. L., Velasco, D. Generation of a Simplified Three-Dimensional Skin-on-a-chip Model in a Micromachined Microfluidic Platform. J. Vis. Exp. (171), e62353, doi:10.3791/62353 (2021).

View Video