Summary

Generation av Hook Ischemia-Reperfusion Modell med hjälp av ett tre dagars utvecklande kycklingembryon

Published: February 19, 2022
doi:

Summary

Detta dokument beskriver ischemia-reperfusion (I/R) modellering i en 3-dagars kyckling embryo med hjälp av en spinal nål anpassade krok för att bättre förstå I/R utveckling och behandling. Denna modell är enkel, snabb och billig.

Abstract

Ischemi och reperfusion (I/R) störningar, såsom hjärtinfarkt, stroke och perifera vaskulär sjukdom, är några av de främsta orsakerna till sjukdom och död. Många in vitro- och in vivo-modeller finns för närvarande tillgängliga för att studera I/R-mekanismen i sjukdom eller skadade vävnader. Hittills har dock ingen i ovo I/R-modell rapporterats, vilket skulle möjliggöra en bättre förståelse för I/R-mekanismer och snabbare läkemedelsscreening. Detta dokument beskriver I/R modellering med hjälp av en spinal nål anpassade krok i en 3-dagars kyckling embryo för att förstå I/R utveckling och behandling mekanismer. Vår modell kan användas för att undersöka anomalier på DNA-, RNA- och proteinnivåerna. Denna metod är enkel, snabb och billig. Den nuvarande modellen kan användas oberoende eller i kombination med befintliga in vitro- och in vivo I/R-modeller.

Introduction

Ischemia-reperfusion vävnad skada har kopplats till ett antal patologier, inklusive hjärtinfarkt, skandinavisk stroke, trauma och perifera vaskulär sjukdom1,2,3,4,5. Detta beror främst på bristande en omfattande förståelse för sjukdomsprogressionen och avsaknaden av en effektiv forskningsmodell. Ischemisk skada uppstår när blodtillförseln till ett visst område av vävnaden är avskuren. Som ett resultat, ischemisk vävnad så småningom necrotizes, även om hastigheten varierar beroende på vävnaden. Därför kan återställande av blodtillförseln bidra till att mildra skadorna. Det har dock observerats, i vissa fall, att reperfusion orsakar mer vävnadsskador än ischemi ensam gör6,7,8. Därför krävs förståelse för de molekylära och cellulära mekanismerna för ischemi-reperfusion för att utveckla en effektiv terapeutisk intervention. För närvarande är ingen effektiv behandling för I/ R skador känd. Denna skillnad har lett till skapandet av nya experimentella modeller, allt från in vitro till in vivo-modeller, för att ta itu med det befintliga problemet9,10,11,12,13.

Kycklingembryon (Gallus gallus domesticus) används ofta i forskning på grund av deras lättillgänglighet, etisk acceptans, relativt stor storlek (jämfört med andra embryon), låg kostnad och snabb tillväxt14. Vi använde en kyckling embryo vid 72 h av utveckling för att skapa en in ovo I/R genom att ocklusive och släppa rätt vitelline gatan med hjälp av en spinal nål. Vi döpte den till Hook-I/R ischemia-reperfusion-modellen (figur 1). Modellen som används i denna studie kan exakt simulera alla nedströmsprocesser, inklusive oxidativa och inflammatoriska vägar, som ofta är förknippade med I/R-skador15,16,17.

Protocol

Den institutionella djuretiska kommittén vid Era’s Lucknow Medical College and Hospital utfärdade ett skriftligt undantag om att inget formellt godkännande krävdes för att utföra dessa experiment i enlighet med kommittén för kontroll och övervakning av djurförsök (CPCSEA). Standardrutiner följdes dock för att minimera risken för embryonala nöd. 1. Buffertberedning (tabell 1) Förbered Ringers lösning För att förbereda Ringers lösning, lös …

Representative Results

Doppler Blood Flow Imaging-tekniken användes för att utvärdera effektiviteten hos vår modell. Kort sagt jämförde vi data från kontrollgruppen med data från RVA-gruppen för att avgöra hur framgångsrikt vi skapar. Figur 4A visar ett typiskt flöde som är förknippat med kontrolldjuret, medan figur 4B visar resultaten från en RVA. Den numeriska 1-8 representerar de olika händelser som är associerade med I/R faser. Kort sagt motsvarar numerisk 1-3 fas…

Discussion

Målet med ischemi-reperfusion forskning är att skapa terapeutiska strategier som förhindrar celldöd och främja återhämtning29,30. För att övervinna nuvarande begränsningar i I/R-forskning utformade vi en Hook I/R chick embryo modell för att producera en pålitlig och reproducerbar I/R-modell. Såvitt vi vet är vår första I/R-modell som någonsin skapats i ett 3-dagars kycklingembryon för rutinmässiga I/R-experiment, förutom att studera stresssign…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Vi vill uttrycka vår tacksamhet till Hari Shankar för hans kritiska ingångar under videografi och redigering, Mr. Baqer Hussain för voice-over, Mr. Asghar Rizvi för videoredigering, Mr. Mohammad Haider för videoinspelningar, Mr. Mohammad Danish Siddiqui för hjälp under experimenten.

Materials

(-80°C) freezer Haier, China
1.5mL Centrifuge tube TARSONS, India 500010X
100mm Petri dish (sterile) Tarsons, India 460050
18G Needle (18G×1.5 (1.25×38mm) Ramsons, India 13990
1mL Syringe DISPO VAN
26G Needle (26G×1/2 (10.45x13mm) DISPO VAN, india 30722D
37°C egg incubator with adjustable percentage humidity Gentek, India GL-100
37°C laboratory incubator SCIENCE TECH, India CB 101-14
3-Methyladenine (3-MA) Sigma Aldrich, USA M9281
3mL Pasture Pipette TARSONS, India 940050
50mL Beaker TARSONS, India
5mL Syringe DISPO VAN, India IP53
70% ethanol Merck Millipore, United States 64-17-5
Adhesive tape/Cello tape Sunrise, India
Ambra1 primers Applied Biosystems, Foster city, USA Hs00387943_m1
Anti-mouse IgG Cell Signaling Technology, USA 7076S
Anti-Rabbit IgG Jackson Immuno Research Laboratories, USA 711-035-152
Atg7 R&D Systems, USA MAB6608
Atg7 primers Applied Biosystems, Foster city, USA Hs00893766_m1
Autoclave Bag Tarsons, India 550022
Autoclave Machine Local made, Lucknow, India
Beclin-1 Proteintech, USA 66665-1-Ig
Beta Actin ImmunoTag, USA ITT07018
Bovine Serum Albumin Himedia, Mumbai, India TC194
Calcium Chloride Himedia, Mumbai, India GRM534
Catalase ImmunoTag, USA ITT5155
Cleaning wipes Kimberly-Clark, India 370080
Cleaved Caspase3 ImmunoTag, USA ITT07022
di-Sodium hydrogen phosphate heptahydrate Himedia, Mumbai, India GRM39611
Doppler blood flowmeter Moors instrument, United Kingdom moorVMS-LDF1
Egg rack
Egg rack
GAPDH ImmunoTag, USA M1000110
GAPDH primers Applied Biosystems, Foster city, USA Hs02758991_g1
Glycine Himedia, Mumbai, India MB013
Kidney tray HOSPITO
LC3A/B Cell Signaling Technology, USA 4108S
Methanol Rankem laboratories, Mumbai, India M0252
Micromanipulator Narishige, Japan M-152
N-acetyl-L-cysteine (NAC) Sigma Aldrich, USA A7250
Naringenin Sigma Aldrich, USA 67604-48-2
NF-kβ Thermo Fisher Scientific, USA 51-0500
NLRP3 ImmunoTag, USA ITT07438
Nose plier Local made, Lucknow, India
Ocular forceps Stoelting, Germany 52106-40
Ocular iris Tufft Surgical Instruments, Jaipur, India Hard Age Vannas Micro Scissors Angled 8CM / 3 1/8"
OHP marker pen Camlin, India
ORP-150 ImmunoTag, USA ITT08329
Pointed sharp edge scissor Stoelting, Germany 52132-11
Potassium Chloride Himedia, Mumbai, India MB043
Potassium phosphate monobasic anhydrous Himedia, Mumbai, India MB050
Protease Inhibitor Abcam, United States Ab65621
SOD-1 ImmunoTag, USA ITT4364
Sodium Chloride Fisher Scientific, Mumbai, India 27605
Sodium dodecyl sulphate Himedia, Mumbai, India GRM886
Spinal needle 25GA; 3.50 IN (90.51 X 90mm) Ramson, India GS-2029
Stereo Zoom surgical microscope Olympus, Japan SZ2-STU3
Syringe discarder BIOHAZARD 882210
Toothed forceps Stoelting, Germany 52102-30
Tris Base G Biosciences, United States RC1217
Tris Hydrochloric Acid Himedia, Mumbai, India MB030
Tween 20 G Biosciences, United States RC1227
White Leghorn Chicken 0-day eggs
Z-Val-Ala-Asp(OMe)-FMK MP Biomedicals, LLC, USA FK009

References

  1. Fauzia, E., et al. Chick Embryo: A Preclinical Model for Understanding Ischemia-Reperfusion Mechanism. Frontiers in Pharmacology. 21 (9), 1034 (2018).
  2. Eltzschig, H. K., Eckle, T. Ischemia and reperfusion–from mechanism to translation. Nature Medicine. 17 (11), 1391-1401 (2011).
  3. Raza, S. S., et al. Neuroprotective effect of naringenin is mediated through suppression of NF-κB signaling pathway in experimental stroke. Neuroscience. 29 (230), 157-171 (2013).
  4. Raza, S. S., et al. Hesperidin ameliorates functional and histological outcome and reduces neuroinflammation in experimental stroke. Brain Research. 28 (1420), 93-105 (2011).
  5. Raza, S. S., et al. Silymarin protects neurons from oxidative stress associated damages in focal cerebral ischemia: a behavioral, biochemical and immunohistological study in Wistar rats. Journal of the Neurological Sciences. 15 (1-2), 45-54 (2011).
  6. Fan, L., Zhou, L. AG490 protects cerebral ischemia/reperfusion injury via inhibiting the JAK2/3 signaling pathway. Brain and Behavior. 11 (1), 01911 (2021).
  7. Wu, M. Y., et al. Current Mechanistic Concepts in Ischemia and Reperfusion Injury. Cellular Physiology and Biochemistry. 46 (4), 1650-1667 (2018).
  8. Collard, C. D., Gelman, S. Pathophysiology, clinical manifestations, and prevention of ischemia-reperfusion injury. Anesthesiology. 94 (6), 1133-1138 (2001).
  9. Allen, D. D., et al. Cell lines as in vitro models for drug screening and toxicity studies. Drug Development and Industrial Pharmacy. 31 (8), 757-768 (2005).
  10. Schmeer, C., Gamez, A., Tausch, S., Witte, O. W., Isenmann, S. Statins modulate heat shock protein expression and enhance retinal ganglion cell survival after transient retinal ischemia/reperfusion in vivo. Investigative Ophthalmology and Visual Science. 49 (11), 4971-4981 (2008).
  11. Huang, K. Y., et al. A systematic review and meta-analysis of acupuncture for improving learning and memory ability in animals. BMC Complementary and Alternative Medicine. 16 (1), 297 (2016).
  12. Sommer, C. J. Ischemic stroke: Experimental models and reality. Acta Neuropathologica. 133 (2), 245-261 (2017).
  13. Yang, W., Chen, J., Meng, Y., Chen, Z., Yang, J. Novel targets for treating ischemia-reperfusion injury in the liver. International Journal of Molecular Sciences. 19 (5), 1302 (2018).
  14. Seabra, R., Bhogal, N. In vivo research using early life stage models. In Vivo. 24 (4), 457-462 (2010).
  15. Liu, H., et al. Adiponectin peptide alleviates oxidative stress and NLRP3 inflammasome activation after cerebral ischemia-reperfusion injury by regulating AMPK/GSK-3beta. Experiments in Neurology. 329, 113302 (2020).
  16. Aboutaleb, N., Jamali, H., Abolhasani, M., Pazoki Toroudi, H. Lavender oil (Lavandula angustifolia) attenuates renal ischemia/reperfusion injury in rats through suppression of inflammation, oxidative stress and apoptosis. Biomedicine and Pharmacotherapy. 110, 9-19 (2019).
  17. Wallert, M., et al. alpha-Tocopherol preserves cardiac function by reducing oxidative stress and inflammation in ischemia/reperfusion injury. Redox Biology. 26, 101292 (2019).
  18. Ashafaq, M., et al. Catechin hydrate ameliorates redox imbalance and limits inflammatory response in focal cerebral ischemia. Neurochemical Research. 37 (8), 1747-1760 (2012).
  19. Gallagher, S., Chakavarti, D. Immunoblot analysis. Journal of Visualized Experiments. 20 (16), 759 (2008).
  20. Abt, M. A., Grek, C. L., Ghatnekar, G. S., Yeh, E. S. Evaluation of lung metastasis in mouse mammary tumor models by quantitative real-time PCR. Journal of Visualized Experiments. (107), e53329 (2016).
  21. Lee, P. Y., Costumbrado, J., Hsu, C. Y., Kim, Y. H. Agarose gel electrophoresis for the separation of DNA fragments. Journal of Visualized Experiments. (62), e3923 (2012).
  22. Wu, Y., et al. Cathelicidin aggravates myocardial ischemia/reperfusion injury via activating TLR4 signaling and P2X(7)R/NLRP3 inflammasome. Journal of Molecular and Cellular Cardiology. 139, 75 (2020).
  23. Franke, M., et al. The NLRP3 inflammasome drives inflammation in ischemia/reperfusion injury after transient middle cerebral artery occlusion in mice. Brain Behaviour and Immunity. 92, 223 (2021).
  24. Lawrence, T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harbor Perspectives in Biology. 1 (6), 001651 (2009).
  25. Liu, H., et al. Pterostilbene attenuates astrocytic inflammation and neuronal oxidative injury after ischemia-reperfusion by inhibiting NF-kappaB phosphorylation. Frontiers in Immunology. 10, 2408 (2009).
  26. Prakash, R., et al. Sivelestat-loaded nanostructured lipid carriers modulate oxidative and inflammatory stress in human dental pulp and mesenchymal stem cells subjected to oxygen-glucose deprivation. Materials Science and Engineering: C Materials for Biological Applications. 120, 111700 (2021).
  27. Prakash, R., et al. Oxidative stress enhances autophagy in stem cells through Erk1/2 signaling pathway – implications for neurotransplantations. Stem Cell Reviews and Reports. , (2021).
  28. Ahmad, A., et al. Gelatin-coated polycaprolactone nanoparticle-mediated naringenin delivery rescue human mesenchymal stem cells from oxygen glucose deprivation-induced inflammatory stress. ACS Biomaterials Science and Engineering. 5 (2), 683-695 (2019).
  29. Guan, X., et al. The neuroprotective effects of carvacrol on ischemia/reperfusion-induced hippocampal neuronal impairment by ferroptosis mitigation. Life Science. 235, 116795 (2019).
  30. Jin, Z., Guo, P., Li, X., Ke, J., Wang, Y., Wu, H. Neuroprotective effects of irisin against cerebral ischemia/ reperfusion injury via Notch signaling pathway. Biomedicine and Pharmacotherapy. 120, 109452 (2019).
  31. Wainrach, S., Sotelo, J. R. Electron microscope study of the developing chick embryo heart. Zeitschrift fur Zellforschung und mikroskopische Anatomie. 55, 622-634 (1961).
  32. Joshi, V. C., Wilson, A. C., Wakil, S. J. Assay for the terminal enzyme of the stearoyl coenzyme A desaturase system using microsomes. Journal of Lipid Research. 18 (1), 32-36 (1977).
  33. Kain, K. H., et al. The chick embryo as an expanding experimental model for cancer and cardiovascular research. Development Dynamics. 243 (2), 216-228 (2014).
  34. Mann, R. A., Moore, K. L., Persaud, T. V. N. Limitations in the u~e of the early chick embryo 88 a teratological model. Teratology. 7, 22-23 (1973).
  35. Chen, T., Vunjak-Novakovic, G. In vitro models of ischemia-reperfusion injury. Regenerative English and Translation Medicine. 4 (3), 142-153 (2018).
  36. Ma, R., et al. Animal models of cerebral ischemia: A review. Biomedicine and Pharmacotherapy. 131, 110686 (2020).
  37. Bromage, D. I., et al. Remote ischaemic conditioning reduces infarct size in animal in vivo models of ischaemia-reperfusion injury: a systematic review and meta-analysis. Cardiovascular Research. 113 (3), 288-297 (2017).
  38. Kalogeris, T., Baines, C. P., Krenz, M., Korthuis, R. J. Cell biology of ischemia/reperfusion injury. International Review of Cell and Molecular Biology. 298, 229-317 (2012).
  39. Hogers, B., DeRuiter, M. C., Baasten, A. M., Gittenberger-de Groot , A. C., Poelmann, R. E. Intracardiac blood flow patterns related to the yolk sac circulation of the chick embryo. Circ Res. 76 (5), 871-877 (1995).
  40. Rezzola, S., et al. angiogenesis-inflammation cross talk in diabetic retinopathy: novel insights from the chick embryo chorioallantoic membrane/human vitreous platform. Frontiers in Immunology. 11, 581288 (2020).
check_url/63288?article_type=t

Play Video

Cite This Article
Kumari, N., Yadav, S. K., Prakash, R., Siddiqui, A. J., Khan, M. A., Raza, S. S. Generation of Hook Ischemia-Reperfusion Model using a Three-Day Developing Chick Embryo. J. Vis. Exp. (180), e63288, doi:10.3791/63288 (2022).

View Video