Summary

通过侧向柔光照明促进脑类器官培养

Published: June 06, 2022
doi:

Summary

脑类器官为研究器官发育和人类疾病病理学提供了前所未有的机会。虽然脑类器官培养系统取得了巨大成功,但在应用这项技术方面仍然存在操作困难。本方案描述了一种促进介质改变和类器官转移的脑类器官程序。

Abstract

目前,脑类器官培养技术操作仍复杂,难以大规模应用。有必要找到一个简单而实用的解决方案。因此,本研究提出了一种更可行的脑类器官方案。为了解决早期介质变化和类器官转移中不可避免的不便,目前的研究通过应用工程原理优化了操作技术。采用柔和的光灯横向照亮胚体(EB)样品,通过增强的漫反射效果,肉眼可以看到EB。利用旋转产生的二次流动原理,类器官向孔中心聚集,这有利于介质变化或类器官转移的操作。与分散的细胞相比,胚状体在移液器中沉降得更快。利用这种现象,可以以简单的方式有效地去除大多数游离细胞和死细胞碎片,防止EB因离心而受到损害。本研究促进脑类器官培养的操作,并有助于促进脑类器官的应用。

Introduction

与二维(2D)培养系统相比,三维(3D)培养系统具有几个优点,包括某些器官的复杂结构的真实复制和有效复制1。因此,脑类器官是人脑发育与疾病2、药物筛选、细胞治疗等研究领域的重要辅助方法之一。

通过旋转悬浮法培养脑类器官有利于它们的发育和成熟3.虽然大脑类器官培养系统取得了巨大的成功,但它们仍然面临着限制其应用的关键挑战。例如,手工栽培涉及复杂的操作步骤,并给实现大规模应用带来了障碍。此外,在脑类器官培养的每个发育阶段,需要改变不同的培养基和细胞因子4.然而,在早期阶段,类器官或EB具有微小的尺寸(约200μm至300μm),并且在没有适当的设备的情况下几乎无法在视觉上进入。不可避免地,当介质发生变化时,一定量的珍贵类器官样品被冲走。已经探索了许多技术来克服其他类型的类器官培养物中的这一点,一些例子包括将整个类器官芯片浸入培养基中3天而不进行干预5;在旧介质被吸收后,使用吸水纸5通过盖玻片添加新鲜介质;或应用复杂的微流体管道进行流体交换678。在类器官培养的早期阶段遇到的另一个障碍是难以用肉眼进行直接观察,这可能导致操作不良,导致类器官移植步骤中的类器官损伤和丢失。因此,有必要建立一个更可行的方案,促进介质变化和类器官转移以产生类器官。

为了克服这些问题,提出了一种基于工程原理的相应优化操作,这显着且方便地促进了许多类器官手术。在自然界中,当太阳透过窗户缝隙照射到房屋中时,肉眼可以看到光束中舞动的灰尘。由于太阳光对尘埃的漫反射,一些光线被折射到眼球中以产生视觉图像。受910现象原理的启发,本研究制作了柔和的光灯并横向照亮了EB。研究发现,EB可以在不影响观察范围的情况下在视觉上清晰可见。由于涡流11,通过旋转培养板在液体中产生指向中心的二次流。原本分散的EB积聚在板的中心。基于此,针对类器官沉降速度快于细胞的现象,提出一种无需离心即可进行介质更换和类器官转移的简便操作方法。通过这种转移操作,培养基中的类器官可以有效地与游离细胞和死细胞碎片分离。

这里提出了一种易于操作的方案,从人多能干细胞中产生脑类器官。通过应用工程原理优化操作技术,使3D文化中的操作与2D文化中的操作一样简单可行。改进的液体交换方法和类器官转移操作也有助于其他类型的类器官培养和自动培养机的设计。

Protocol

该议定书是在《赫尔辛基宣言》之后进行的。经广州医科大学第三附属医院伦理委员会批准(医德伦理审查[2021]022号)。在实验之前,每种培养基都是根据Juergen A. Knoblich的配方12 (补充表1-4)制备的,或者使用市售的脑类器官试剂盒(见 材料表)。本研究中使用的iPSC先前由我们的实验室建立,并已获得知情豁免。SCA3-iPSCs由一名31岁的女性脊髓小脑共济…

Representative Results

本研究诱导iPSCs(图2B)进入脑类器官(图2C)。早期培养的EB表示OCT4标记(图2A),表明良好的多能性。在后期阶段,EBs发育成成熟的脑类器官(图2D)。该研究将iPSC从正常健康个体和SCA3患者培养成脑类器官(图3A)。SCA3,也称为马查多- 约瑟夫病(MJD),是由ATXN3基因25<…

Discussion

大脑类器官为医学研究开辟了新的途径。该技术的许多有用应用才刚刚开始探索28.本研究发现,遗传性疾病性脑类器官与正常脑类器官的转录组测序结果可以反映疾病与健康之间的差异。例如,RNA-seq数据分析结果(图3B)与许多报道的SCA3疾病2930,3132的研?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

本研究由广东省自然科学基金(批准号:2020A0505100062)、广州市科技重点课题项目(第201904020025号)、国家自然科学基金项目(31872800号、32070582、82101937)和广州市博士后科研资助项目(陈邦珠)资助。

Materials

0.2 μm Filter NEST Biotechnology, China 331001
1000 μL wide-bore pipette tip Thermo Fisher Scientific, USA 9405163
200 μL wide-bore pipette tip Thermo Fisher Scientific, USA 9405020
2-Mercaptoethanol Merck, Germany 8057400005
4% Paraformaldehyde Servicebio, China G1101
6-well low adhesion plate NEST Biotechnology, China 703011 It is used for EBs suspension cultures
Aaccute cell detachment solution STEMCELL Technologies, Canada 07920 It is used to digest iPSC into single cells.
AggreWell800 24-well STEMCELL Technologies, Canada 34811 Microporous culture plate for EBs preparation.
Anti-Adherence Rinsing Solution STEMCELL Technologies, Canada 07010 Rinsing solution for cultureware to prevent cell adhesion
B27-vit. A supplement Thermo Fisher Scientific, USA 12587010
bFGF Peprotech, USA GMP100-18B
BSA Beyotime Biotechnology, China ST025
Centrifuge Eppendorf, Germany 5810 R It can be used for centrifugation of various types of centrifuge tubes, reagent bottles and working plates.
Cover glass Shitai Laboratory Equipment, China 10212020C
DAPI Beyotime Biotechnology, China C1002 Used for nuclear staining. After DAPI was combined with double stranded DNA, the maximum excitation wavelength was 364nm and the maximum emission wavelength was 454nm.
DMEM-F12 Thermo Fisher Scientific, USA 11330032
ES-quality FBS Thermo Fisher Scientific, USA 10270106
Ficoll Paque General Electric Company, USA 17-5442-02 Isolate the peripheral blood mononuclear cells according to Ficoll-Paque method.
Gelatin Sangon Bioteach, China A609764
Glutamax supplement Thermo Fisher Scientific, USA 35050061
Glutamax supplement Thermo Fisher Scientific, USA 17504044
Goat anti-Chicken IgY  secondary antibody Abcam, UK ab150171 Goat anti-Chicken IgG. Conjugation: Alexa Fluor 647. Ex: 652 nm, Em: 668 nm. Use at 1:500 dilution.
Goat anti-Mouse IgG secondary antibody Abcam, UK ab150120 Goat anti-Mouse IgG. Conjugation: Alexa Fluor 594. Ex: 590 nm, Em: 617 nm. Use at 1:500 dilution.
Goat anti-Rabbit IgG secondary antibody Abcam, UK ab150077 Goat Anti-Rabbit IgG. Conjugation: Alexa Fluor 488. Ex: 495 nm, Em: 519 nm. Use at 1:500 dilution.
Heparin Merck, Germany H3149
Horizontal shaker Servicebio, China DS-H200 Relative centrifugal force (RCF) of 0.11808 x g is more appropriate, according to the manufacturer INFORS HT (Switzerland).
Insulin Merck, Germany I9278-5ML
KOSR Thermo Fisher Scientific, USA 10828028
Matrigel Corning, USA 354277 Matrigel will solidify in the environment higher than 4 °C, so it should be sub packed at low temperature.
MEM-NEAA Thermo Fisher Scientific, USA 11140050
mTeSR1 STEMCELL Technologies, Canada 85850 iPSC culture medium
N2 supplement Thermo Fisher Scientific, USA 17502048
Neurobasal Thermo Fisher Scientific, USA 21103049
OCT4 primary antibody Abcam, UK ab19857 Host: Rabbit. Dissolve with 500 μL PBS. Use at 1:200 dilution.
Pathological frozen slicer Leica, Germany Leica CM1860
PAX6 primary antibody Abcam, UK ab78545 Host: Mouse. Use at 1:100 dilution.
PBS STEMCELL Technologies, Canada 37350
Penicillin-Streptomycin Thermo Fisher Scientific, USA 15140122
PSC dissociation solution Beijing Saibei Biotechnology, China CA3001500 Enzyme free dissociation solution can be used for iPSC digestion and passage.
Sendai Reprogramming Kit Thermo Fisher Scientific, USA A16518 Establish iPSC according to the protocol of Sendai Reprogramming Kit.
Slide Glass Shitai Laboratory Equipment, China 188105W
Soft light lamp NUT NUT A simple self made device, refer to supplementary figure 2 for preparation.
STEMdiff Cerebral Organoid Kit STEMCELL Technologies, Canada 8570 Contain: 1. EB Formation Medium; 2. Induction Medium; 3. Expansion Medium; 4. Maturation Medium.
STEMdiff Cerebral Organoid Maturation Kit STEMCELL Technologies, Canada 8571 Maturation Medium
Sucrose Sangon Bioteach, China A502792
Triton X-100 Merck, Germany X100
TUJ1 primary antibody Abcam, UK ab41489 Host: Chicken. Use at 1:1000 dilution.
Vaseline Sangon Bioteach, China A510146
Y-27632 STEMCELL Technologies, Canada 72302 Prepare a 5 mM stock solution in PBS, resuspend 1 mg in 624 µL of PBS.
Weblink
Raw sequencing data Genome Sequence Archive (Genomics, Proteomics & Bioinformatics 2021) in National Genomics Data Center (Nucleic Acids Res 2022), China National Center for Bioinformation / Beijing Institute of Genomics, Chinese Academy of Sciences GSA-Human: HRA002430 https://ngdc.cncb.ac.cn/gsa-human/

References

  1. Jensen, C., Teng, Y. Is it time to start transitioning from 2D to 3D cell culture. Frontiers in Molecular Biosciences. 7 (33), (2020).
  2. Quadrato, G., et al. Cell diversity and network dynamics in photosensitive human brain organoids. Nature. 545 (7652), 48-53 (2017).
  3. Lancaster, M. A., et al. Cerebral organoids model human brain development and microcephaly. Nature. 501 (7467), 373-379 (2013).
  4. Qian, X., et al. et al.Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell. 165 (5), 1238-1254 (2016).
  5. Hu, Y., et al. Lung cancer organoids analyzed on microwell arrays predict drug responses of patients within a week. Nature Communications. 12 (1), 2581 (2021).
  6. Jung, D. J., et al. A one-stop microfluidic-based lung cancer organoid culture platform for testing drug sensitivity. Lab on a Chip. 19 (17), 2854-2865 (2019).
  7. Jalili-Firoozinezhad, S., et al. A complex human gut microbiome cultured in an anaerobic intestine-on-a-chip. Nature Biomedical Engineering. 3 (7), 520-531 (2019).
  8. Gkatzis, K., Taghizadeh, S., Huh, D., Stainier, D. Use of three-dimensional organoids and lung-on-a-chip methods to study lung development, regeneration and disease. The European Respiratory Journal. 52 (5), 1800876 (2018).
  9. Ye, Y., Pui, D. Detection of nanoparticles suspended in a light scattering medium. Scientific Reports. 11 (1), 20268 (2021).
  10. Staven, V., Waaseth, M., Wang, S., Grønlie, I., Tho, I. Utilization of the tyndall effect for enhanced visual detection of particles in compatibility testing of intravenous fluids: Validity and reliability. PDA Journal of Pharmaceutical Science and Technology. 69 (2), 270-283 (2015).
  11. Fukuma, Y., Inui, T., Imashiro, C., Kurashina, Y., Takemura, K. Homogenization of initial cell distribution by secondary flow of medium improves cell culture efficiency. PloS One. 15 (7), 0235827 (2020).
  12. Lancaster, M. A., Knoblich, J. A. Generation of cerebral organoids from human pluripotent stem cells. Nature Protocols. 9 (10), 2329-2340 (2014).
  13. Ouyang, S., et al. CRISPR/Cas9-targeted deletion of polyglutamine in spinocerebellar ataxia type 3-derived induced pluripotent stem cells. Stem Cells and Development. 27 (11), 756-770 (2018).
  14. Xian, Y., et al. The safety and effectiveness of genetically corrected iPSCs derived from β-thalassaemia patients in nonmyeloablative β-thalassaemic mice. Stem Cell Research and Therapy. 11 (1), 288 (2020).
  15. Kanof, M. E., Smith, P. D., Zola, H. Isolation of whole mononuclear cells from peripheral blood and cord blood. Current Protocols in Immunology. , (2001).
  16. Knight, G. T., et al. Engineering induction of singular neural rosette emergence within hPSC-derived tissues. eLife. 7, 37549 (2018).
  17. Rieder, H. L., Smithwick, R. W. RPM or RCF. The American Review of Respiratory Disease. 132 (6), 1371 (1985).
  18. Dole, V. P., Cotzias, G. C. A nomogram for the calculation of relative centrifugal force. Science. 113 (2941), 552-553 (1951).
  19. Velasco, S., et al. Individual brain organoids reproducibly form cell diversity of the human cerebral cortex. Nature. 570 (7762), 523-527 (2019).
  20. Jacob, F., et al. Human pluripotent stem cell-derived neural cells and brain organoids reveal SARS-CoV-2 neurotropism predominates in choroid plexus epithelium. Cell Stem Cell. 27 (6), 937-950 (2020).
  21. Kathuria, A., et al. Transcriptomic landscape and functional characterization of induced pluripotent stem cell-derived cerebral organoids in schizophrenia. JAMA Psychiatry. 77 (7), 745-754 (2020).
  22. Paşca, A. M., et al. Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nature Methods. 12 (7), 671-678 (2015).
  23. Hu, B. Y., et al. Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency. Proceedings of the National Academy of Sciences of the United States of America. 107 (9), 4335-4340 (2010).
  24. Tang, X. Y., et al. DSCAM/PAK1 pathway suppression reverses neurogenesis deficits in iPSC-derived cerebral organoids from patients with Down syndrome. The Journal of Clinical Investigation. 131 (12), 135763 (2021).
  25. Costa, M., Paulson, H. L. Toward understanding Machado-Joseph disease. Progress in Neurobiology. 97 (2), 239-257 (2012).
  26. Trapnell, C., et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotechnology. 28 (5), 511-515 (2010).
  27. Love, M. I., Huber, W., Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology. 15 (12), 550 (2014).
  28. Clevers, H. Modeling development and disease with organoids. Cell. 165 (7), 1586-1597 (2016).
  29. Klockgether, T., et al. Age related axonal neuropathy in spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3/MJD). Journal of Neurology, Neurosurgery, and Psychiatry. 66 (2), 222-224 (1999).
  30. Khan, L. A., et al. Expanded polyglutamines impair synaptic transmission and ubiquitin-proteasome system in Caenorhabditis elegans. Journal of Neurochemistry. 98 (2), 576-587 (2006).
  31. Teixeira-Castro, A., et al. Serotonergic signalling suppresses ataxin 3 aggregation and neurotoxicity in animal models of Machado-Joseph disease. Brain: A Journal of Neurology. 138, 3221-3237 (2015).
  32. Joers, J. M., et al. Neurochemical abnormalities in premanifest and early spinocerebellar ataxias. Annals of Neurology. 83 (4), 816-829 (2018).
  33. Sivitilli, A., Ghiasi, P., Attisano, L. Production of phenotypically uniform human cerebral organoids from pluripotent stem cells. Bio-protocol. 11 (8), 3985 (2021).
  34. Sivitilli, A. A., et al. Robust production of uniform human cerebral organoids from pluripotent stem cells. Life Science Alliance. 3 (5), (2020).
  35. Camp, J. G., Treutlein, B. Human development: Advances in mini-brain technology. Nature. 545 (7652), 39-40 (2017).
  36. Giandomenico, S. L., Sutcliffe, M., Lancaster, M. A. Generation and long-term culture of advanced cerebral organoids for studying later stages of neural development. Nature Protocols. 16 (2), 579-602 (2021).
  37. Yoon, S. J., et al. Reliability of human cortical organoid generation. Nature Methods. 16 (1), 75-78 (2019).
  38. Lancaster, M. A., Knoblich, J. A. Organogenesis in a dish: Modeling development and disease using organoid technologies. Science. 345 (6194), 1247125 (2014).
  39. Driehuis, E., Kretzschmar, K., Clevers, H. Establishment of patient-derived cancer organoids for drug-screening applications. Nature Protocols. 15 (10), 3380-3409 (2020).
check_url/63989?article_type=t

Play Video

Cite This Article
Chen, B., Lin, Q., Liu, N., Chen, D., Zhang, Y., Sun, X. Facilitating Cerebral Organoid Culture via Lateral Soft Light Illumination. J. Vis. Exp. (184), e63989, doi:10.3791/63989 (2022).

View Video