Summary

微电极阵列和膜片钳记录在人诱导多能干细胞来源心肌细胞上的技术应用

Published: August 04, 2022
doi:

Summary

人诱导的多能干细胞来源的心肌细胞(hiPSC-CMs)已成为药物诱导的心脏毒性筛查和疾病建模的有前途的 体外 模型。在这里,我们详细介绍了用于测量hiPSC-CMs的收缩力和电生理学的方案。

Abstract

药物引起的心脏毒性是药物损耗和退出市场的主要原因。因此,使用适当的临床前心脏安全性评估模型是药物开发过程中的关键步骤。目前,心脏安全性评估仍然高度依赖于动物研究。然而,由于物种特异性差异,特别是在心脏电生理特性方面,动物模型受到人类翻译特异性差的困扰。因此,迫切需要开发一种可靠、高效和基于人的临床前心脏安全性评估模型。人诱导的多能干细胞来源心肌细胞(hiPSC-CMs)已成为药物诱导的心脏毒性筛查和疾病建模的 宝贵体外 模型。hiPSC-CMs可以从具有不同遗传背景和各种疾病状况的个体中获得,使其成为单独评估药物诱导的心脏毒性的理想替代品。因此,需要建立全面研究hiPSC-CMs功能特征的方法。在该协议中,我们详细介绍了可以在hiPSC-CMs上评估的各种功能测定,包括收缩力,场电位,动作电位和钙处理的测量。总体而言,将hiPSC-CMs纳入临床前心脏安全性评估有可能彻底改变药物开发。

Introduction

药物开发是一个漫长而昂贵的过程。一项针对美国食品和药物管理局 (FDA) 在 2009 年至 2018 年间批准的新治疗药物的研究报告称,资本化研究和临床试验的估计成本中位数为每种产品 9.85 亿美元1。药物引起的心脏毒性是药物损耗和退出市场的主要原因2.值得注意的是,多类治疗药物中报告了心脏毒性3。因此,心脏安全性评估是药物开发过程中的关键组成部分。目前的心脏安全性评估范式仍然高度依赖于动物模型。然而,与使用动物模型的物种差异越来越被认为是人类患者药物诱导的心脏毒性预测不准确的主要原因4。例如,由于不同复极电流的贡献,人类和小鼠之间的心脏动作电位形态差异很大5。此外,可影响心脏生理学的心肌球蛋白和环状RNA的差异亚型已在物种67中得到充分记录。为了弥合这些差距,必须建立一个可靠、高效和基于人的临床前心脏安全性评估模型。

诱导多能干细胞(iPSC)技术的突破性发明产生了前所未有的药物筛选和疾病建模平台。在过去的十年中,产生人类诱导的多能干细胞衍生心肌细胞(hiPSC-CMs)的方法已经非常成熟89。hiPSC-CMs在疾病建模、药物诱导的心脏毒性筛查和精准医学中的潜在应用引起了极大的兴趣。例如,hiPSC-CMs已被用于模拟由遗传引起的心脏病的病理表型,例如长QT综合征10,肥厚型心肌病11,12和扩张型心肌病131415因此,已经确定了与心脏病发病机制有关的关键信号通路,这可以阐明有效治疗的潜在治疗策略。此外,hiPSC-CMs已被用于筛选与抗癌药物相关的药物诱导的心脏毒性,包括多柔比星,曲妥珠单抗和酪氨酸激酶抑制剂161718;减轻由此产生的心脏毒性的策略正在研究中。最后,hiPSC-CMs中保留的遗传信息允许在个体和人群水平上筛选和预测药物诱导的心脏毒性1920。总的来说,hiPSC-CMs已被证明是个性化心脏安全预测的宝贵工具。

该协议的总体目标是建立全面有效地研究hiPSC-CMs功能特征的方法,这对于将hiPSC-CMs应用于疾病建模,药物诱导的心脏毒性筛查和精准医学非常重要。在这里,我们详细介绍了一系列功能测定来评估hiPSC-CMs的功能特性,包括收缩力,场电位,动作电位和钙(Ca2+)处理的测量(图1)。

Protocol

1. 培养基和溶液的制备 通过混合 10 mL 瓶装 50x B27 补充剂和 500 mL RPMI 1640 培养基来制备 hiPSC-CM 维持培养基。将培养基储存在4°C并在一个月内使用。使用前将介质平衡至室温 (RT)。 通过混合 20 mL 血清替代物和 180 mL hiPSC-CM 维持培养基(10% 稀释度,v/v)制备 hiPSC-CM 接种培养基。虽然新鲜制备的播种培养基是优选的,但它可以在4°C下储存不超过2周。使用前将培养基平衡…

Representative Results

该协议描述了如何测量hiPSC-CM的收缩运动,场电位,动作电位和Ca2 + 瞬态。包括酶消化、细胞接种、维持和功能测定传导的示意图如图 1 所示。hiPSC-CM单层的形成对于收缩运动测量是必要的(图2B)。hiPSC-CMs收缩-松弛运动的代表性迹线如图 2C所示。分析仪软件通过使用默认设置检测收缩开始、收缩峰值、收缩结束、松弛峰?…

Discussion

人类iPSC技术已成为疾病建模和药物筛选的强大平台。在这里,我们描述了用于测量hiPSC-CM收缩力,场电位,动作电位和Ca2 +瞬态的详细协议。该协议提供了hiPSC-CM收缩力和电生理学的全面表征。这些功能测定已应用于我们组12,131824,2526<sup cl…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们感谢Blake Wu校对稿件。这项工作得到了美国国立卫生研究院(NIH)R01 HL113006,R01 HL141371,R01 HL163680,R01 HL141851,U01FD005978和NASA NNX16A069A(JCW)以及AHA博士后奖学金872244(GMP)的支持。

Materials

35 mm glass bottom dish with 20 mm micro-well #1.5 cover glass Cellvis D35-20-1.5-N Patch clamp
50x B27 supplements Life Technologies 17504-044 hiPSC-CM culture medium
6-well culture plate E & K Scientific EK-27160 hiPSC-CM culture
96-well flat clear bottom black polystyrene TC-treated microplates Corning 3603 Contraction motion measurement
Accutase Sigma-Aldrich A6964 Enzymatic dissociation
Axion's Integrated Studio (AxIS) Axion Biosystems navigator software
Borosilicate glass capillaries Harvard Apparatus BF 100-50-10, Patch clamp
CaCl2 1 M in H2O Sigma-Aldrich 21115 Tyrode’s solution
Cell counting chamber slides ThermoFisher Scientific C10228 Cell counting
CytoView 48-well MEA plates Axion Biosystems M768-tMEA-48B MEA
DMEM/F12 Gibco/Life Technologies 12634028 Extracellular matrix medium
DPBS, no calcium, no magnesium Fisher Scientific 14-190-250
EGTA Sigma-Aldrich E3889 Intracellular pipette solution
EPC 10 USB patch clamp amplifier Warner Instruments 89-5000 Patch clamp
Fura-2, AM, cell permeant ThermoFisher Scientific F1221 Ca2+ transient measurement
Glucose Sigma-Aldrich G8270 Tyrode’s solution
HEPES Sigma-Aldrich H3375 Tyrode’s solution
hiPSCs Stanford Cardiovascular Institute iPSC Biobank
KCl Sigma-Aldrich 529552 Tyrode’s solution
KnockOut Serum Replacement ThermoFisher Scientific 10828-028 hiPSC-CM seeding medium
KOH 8 M Sigma-Aldrich P4494 Intracellular pipette solution
Lambda DG 4 Sutter Instrument Company Ca2+ transient measurement; ultra-high-speed wavelength switching light source
Luna-FL automated fluorescence cell counter WISBIOMED LB-L20001 Cell counting
Maestro Pro MEA system Axion Biosystems MEA
Matrigel Growth Factor Reduced (GFR) Basement Membrane Matrix Corning 356231 Extracellular matrix medium
MgATP Sigma-Aldrich A9187 Intracellular pipette solution
MgCl2 Sigma-Aldrich M8266 Tyrode’s solution
NaCl Sigma-Aldrich S9888 Tyrode’s solution
NaOH 10 M Sigma-Aldrich 72068 Tyrode’s solution
NIS Elements AR
Pluronic F-127 (20% Solution in DMSO) ThermoFisher Scientific P3000MP Ca2+ transient measurement
RPMI 1640 medium Life Technologies 11875-119 hiPSC-CM culture medium
Sony SI8000 Cell Motion Imaging System Sony Biotechnology Contraction motion measurement
Sutter Micropipette puller Sutter Instruments P-97 Patch clamp
Trypan blue stain Life Technologies T10282 Cell counting

References

  1. Wouters, O. J., McKee, M., Luyten, J. Estimated research and development investment needed to bring a new medicine to market, 2009-2018. Journal of the American Medical Association. 323 (9), 844-853 (2020).
  2. Pang, L., et al. Workshop report: FDA workshop on improving cardiotoxicity assessment with human-relevant platforms. Circulation Research. 125 (9), 855-867 (2019).
  3. Mamoshina, P., Rodriguez, B., Bueno-Orovio, A. Toward a broader view of mechanisms of drug cardiotoxicity. Cell Reports Medicine. 2 (3), 100216 (2021).
  4. Paik, D. T., Chandy, M., Wu, J. C. Patient and disease-specific induced pluripotent stem cells for discovery of personalized cardiovascular drugs and therapeutics. Pharmacological Reviews. 72 (1), 320-342 (2020).
  5. Kaese, S., Verheule, S. Cardiac electrophysiology in mice: a matter of size. Frontiers in Physiology. 3, 345 (2012).
  6. Clark, W. A., Chizzonite, R. A., Everett, A. W., Rabinowitz, M., Zak, R. Species correlations between cardiac isomyosins. A comparison of electrophoretic and immunological properties. Journal of Biological Chemistry. 257 (10), 5449-5454 (1982).
  7. Werfel, S., et al. Characterization of circular RNAs in human, mouse, and rat hearts. Journal of Molecular and Cellular Cardiology. 98, 103-107 (2016).
  8. Burridge, P. W., et al. Chemically defined generation of human cardiomyocytes. Nature Methods. 11 (8), 855-860 (2014).
  9. Sharma, A., et al. Derivation of highly purified cardiomyocytes from human induced pluripotent stem cells using small molecule-modulated differentiation and subsequent glucose starvation. Journal of Visualized Experiments. (97), e52628 (2015).
  10. Itzhaki, I., et al. Modelling the long QT syndrome with induced pluripotent stem cells. Nature. 471 (7337), 225-229 (2011).
  11. Lan, F., et al. Abnormal calcium handling properties underlie familial hypertrophic cardiomyopathy pathology in patient-specific induced pluripotent stem cells. Cell Stem Cell. 12 (1), 101-113 (2013).
  12. Wu, H., et al. Modelling diastolic dysfunction in induced pluripotent stem cell-derived cardiomyocytes from hypertrophic cardiomyopathy patients. European Heart Journal. 40 (45), 3685-3695 (2019).
  13. Lee, J., et al. Activation of PDGF pathway links LMNA mutation to dilated cardiomyopathy. Nature. 572 (7769), 335-340 (2019).
  14. Sun, N., et al. Patient-specific induced pluripotent stem cells as a model for familial dilated cardiomyopathy. Science Translational Medicine. 4 (130), (2012).
  15. Chen, S. N., et al. Activation of PDGFRA signaling contributes to filamin C-related arrhythmogenic cardiomyopathy. Science Advances. 8 (8), (2022).
  16. Sharma, A., et al. High-throughput screening of tyrosine kinase inhibitor cardiotoxicity with human induced pluripotent stem cells. Science Translational Medicine. 9 (377), (2017).
  17. Burridge, P. W., et al. Human induced pluripotent stem cell-derived cardiomyocytes recapitulate the predilection of breast cancer patients to doxorubicin-induced cardiotoxicity. Nature Medicine. 22 (5), 547-556 (2016).
  18. Kitani, T., et al. Human-induced pluripotent stem cell model of trastuzumab-induced cardiac dysfunction in patients with breast cancer. Circulation. 139 (21), 2451-2465 (2019).
  19. Matsa, E., et al. Transcriptome profiling of patient-specific human iPSC-cardiomyocytes predicts individual drug safety and efficacy responses in vitro. Cell Stem Cell. 19 (3), 311-325 (2016).
  20. Stillitano, F., et al. Modeling susceptibility to drug-induced long QT with a panel of subject-specific induced pluripotent stem cells. Elife. 6, (2017).
  21. Zhang, J. Z., et al. Protocol to measure contraction, calcium, and action potential in human-induced pluripotent stem cell-derived cardiomyocytes. STAR Protocols. 2 (4), 100859 (2021).
  22. Blinova, K., et al. International multisite study of human-induced pluripotent stem cell-derived cardiomyocytes for drug proarrhythmic potential assessment. Cell Reports. 24 (13), 3582-3592 (2018).
  23. Greensmith, D. J. Ca analysis: an Excel based program for the analysis of intracellular calcium transients including multiple, simultaneous regression analysis. Computer Methods and Programs in Biomedicine. 113 (1), 241-250 (2014).
  24. Ma, N., et al. Determining the pathogenicity of a genomic variant of uncertain significance using CRISPR/Cas9 and human-induced pluripotent stem cells. Circulation. 138 (23), 2666-2681 (2018).
  25. Lam, C. K., et al. Identifying the transcriptome signatures of calcium channel blockers in human induced pluripotent stem cell-derived cardiomyocytes. Circulation Research. 125 (2), 212-222 (2019).
  26. Seeger, T., et al. A premature termination codon mutation in MYBPC3 causes hypertrophic cardiomyopathy via chronic activation of nonsense-mediated decay. Circulation. 139 (6), 799-811 (2019).
  27. Zhang, J. Z., et al. Effects of cryopreservation on human induced pluripotent stem cell-derived cardiomyocytes for assessing drug safety response profiles. Stem Cell Reports. 16 (1), 168-181 (2021).
  28. Yu, B., Zhao, S. R., Yan, C. D., Zhang, M., Wu, J. C. Deconvoluting the cells of the human heart with iPSC technology: cell types, protocols, and uses. Current Cardiology Reports. 24 (5), 487-496 (2022).
  29. Thomas, D., Cunningham, N. J., Shenoy, S., Wu, J. C. Human-induced pluripotent stem cells in cardiovascular research: current approaches in cardiac differentiation, maturation strategies, and scalable production. Cardiovascular Research. 118 (1), 20-36 (2022).
  30. Zhu, R., et al. Physical developmental cues for the maturation of human pluripotent stem cell-derived cardiomyocytes. Stem Cell Research & Therapy. 5 (5), 117 (2014).
  31. Feyen, D. A. M., et al. Metabolic maturation media improve physiological function of human iPSC-derived cardiomyocytes. Cell Reports. 32 (3), 107925 (2020).
  32. Gintant, G., et al. Use of human induced pluripotent stem cell-derived cardiomyocytes in preclinical cancer drug cardiotoxicity testing: a scientific statement from the American Heart Association. Circulation Research. 125 (10), 75-92 (2019).
  33. Kussauer, S., David, R., Lemcke, H. hiPSCs Derived cardiac cells for drug and toxicity screening and disease modeling: what micro- electrode-array analyses can tell us. Cells. 8 (11), (2019).
  34. Ng, C. A., et al. High-throughput phenotyping of heteromeric human ether-a-go-go-related gene potassium channel variants can discriminate pathogenic from rare benign variants. Heart Rhythm. 17 (3), 492-500 (2020).
  35. Obergrussberger, A., Friis, S., Bruggemann, A., Fertig, N. Automated patch clamp in drug discovery: major breakthroughs and innovation in the last decade. Expert Opinion on Drug Discovery. 16 (1), 1-5 (2021).
  36. Kozek, K. A., et al. High-throughput discovery of trafficking-deficient variants in the cardiac potassium channel KV11.1. Heart Rhythm. 17 (12), 2180-2189 (2020).
  37. Heyne, H. O., et al. Predicting functional effects of missense variants in voltage-gated sodium and calcium channels. Science Translational Medicine. 12 (556), (2020).
  38. Li, W., et al. Establishment of an automated patch-clamp platform for electrophysiological and pharmacological evaluation of hiPSC-CMs. Stem Cell Research. 41, 101662 (2019).
  39. Li, W., Luo, X., Ulbricht, Y., Guan, K. Blebbistatin protects iPSC-CMs from hypercontraction and facilitates automated patch-clamp based electrophysiological study. Stem Cell Research. 56, 102565 (2021).
  40. Milligan, C. J., Möller, C., Gamper, N. . Ion Channels: Methods and Protocols. , 171-187 (2013).
check_url/64265?article_type=t

Play Video

Cite This Article
Zhao, S. R., Mondéjar-Parreño, G., Li, D., Shen, M., Wu, J. C. Technical Applications of Microelectrode Array and Patch Clamp Recordings on Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. J. Vis. Exp. (186), e64265, doi:10.3791/64265 (2022).

View Video