Summary

小鼠 体内 胎盘靶向CRISPR操作

Published: April 14, 2023
doi:

Summary

在这里,我们描述了一种时间特异性方法,以有效操纵 体内小鼠胎盘中的关键发育途径。这是通过在胚胎第12.5天将CRISPR质粒注射和电穿孔到妊娠母亲的胎盘中进行的。

Abstract

胎盘是调节和维持子宫 哺乳动物发育的重要器官。胎盘负责母亲和胎儿之间营养物质和废物的转移以及生长因子和激素的产生和输送。小鼠胎盘遗传操作对于了解胎盘在产前发育中的特定作用至关重要。表达胎盘特异性Cre的转基因小鼠具有不同的有效性,其他胎盘基因操作方法可能是有用的替代方案。本文描述了一种利用CRISPR基因操作直接改变胎盘基因表达的技术,可用于修饰靶基因的表达。使用相对先进的手术方法,怀孕的母亲在胚胎第12.5天(E12.5)进行剖腹手术,并通过玻璃微量移液器将CRISPR质粒输送到单个胎盘中。质粒在每次进样后立即电穿孔。母体恢复后,胎盘和胚胎可以继续发育,直到稍后的时间点进行评估。使用该技术后对胎盘和后代的评估可以确定时间特异性胎盘功能在发育中的作用。这种类型的操作将允许更好地了解胎盘遗传学和功能如何影响多种疾病背景下的胎儿生长和发育。

Introduction

胎盘是参与胎儿发育的重要器官。胎盘的主要作用是提供基本因素并调节营养物质和废物与胎儿之间的转移。哺乳动物胎盘由胎儿和母体组织组成,它们构成了胎母界面,因此,母体和胎儿的遗传学影响功能1。胎盘的遗传异常或功能受损会极大地改变胎儿的发育。先前的工作表明,胎盘遗传学和发育与胎儿特定器官系统的发育改变有关。特别是,胎盘异常与胎儿大脑,心脏和血管系统的变化有关2345

激素、生长因子和其他分子从胎盘到胎儿的运输在胎儿发育中起着重要作用6。已经表明,改变特定分子的胎盘产生可以改变神经发育。母体炎症可以通过改变胎盘中的色氨酸(TRP)代谢基因表达来增加血清素的产生,从而在胎儿大脑中产生血清素7。其他研究发现胎盘异常与心脏缺陷。胎盘异常被认为会导致先天性心脏缺陷,这是人类最常见的出生缺陷8。最近的一项研究已经确定了几个在胎盘和心脏中具有相似细胞途径的基因。如果被破坏,这些途径可能会导致两个器官的缺陷9。胎盘缺陷可能会加剧先天性心脏缺陷。胎盘遗传学和功能对特定胎儿器官系统发育的作用是一个新兴的研究领域。

小鼠具有血绒毛膜胎盘和人类胎盘的其他特征,这使它们成为研究人类疾病的非常有用的模型1。尽管胎盘很重要,但目前缺乏有针对性的体内基因操作。此外,目前有更多的选择可用于敲除或敲低,而不是胎盘中的过表达或功能获得操作10。有几种表达Cre转基因系用于胎盘特异性操作,每种系在不同的时间点位于不同的滋养层谱系中。这些包括Cyp19-CreAda/Tpbpa-CrePDGFRα-CreERGcm1-Cre 11121314虽然这些Cre转基因是有效的,但它们可能无法在特定的时间点操纵某些基因。敲除或过表达胎盘基因表达的另一种常用方法是将慢病毒载体插入囊胚培养物中,这会导致滋养层特异性遗传操作1516。该技术允许胎盘基因表达在发育早期发生强劲变化。RNA干扰在体内的使用在胎盘中很少使用。shRNA质粒的插入可以类似于本文中描述的CRIPSR技术进行。这已在E13.5完成,以成功降低胎盘中的PlGF表达,对后代脑脉管系统产生影响17

除了主要用于敲除或敲低的技术外,诱导过表达通常使用腺病毒或插入外源性蛋白进行。用于过表达的技术具有不同的成功率,并且大多在妊娠后期进行。为了研究胰岛素样生长因子1(IGF-1)在胎盘功能中的作用,进行了腺病毒介导的胎盘基因转移以诱导IGF-1基因1819的过表达。这是在小鼠妊娠后期通过直接胎盘注射E18.5上进行的。为了提供额外的选择并规避已建立的胎盘遗传操作的可能失败,例如Cre-Lox组合失败,腺病毒的可能毒性以及shRNA的脱靶效应,可以使用盘的体内直接CRISPR操作202122。开发该模型是为了解决缺乏过表达模型的问题,并创建一个具有灵活性的模型。

该技术基于Lecuyer等人的工作,其中shRNA和CRISPR质粒在体内直接靶向小鼠胎盘以改变PlGF表达17。该技术可用于在多个时间点使用CRISPR操作直接改变胎盘基因表达;对于这项工作,选择了E12.5。此时胎盘已经成熟,并且足够大,可以操纵,允许在E12.5上插入特定的CRISPR质粒,这可能对怀孕中晚期的胎儿发育产生重大影响2324。与转基因方法不同,但与病毒诱导或RNA干扰类似,该技术允许使用相对先进的手术方法在特定时间点进行过表达或敲除,从而避免早期变化可能造成的胎盘受损或胚胎致死性。由于只有少数胎盘在一窝中接受实验质粒或对照质粒,因此该方法允许两种类型的内部对照。这些质控品是用适当的对照质粒进样和电穿孔的质粒,以及未接受直接操作的质粒。该技术经过优化,通过协同激活介质(SAM)CRISPR质粒小鼠胎盘中产生IGF-1基因的过表达。选择了 IGF-1 基因,因为 IGF-1 是一种主要的生长激素,主要在出生前在胎盘中产生2526.这种新的胎盘靶向CRISPR技术将允许直接操作,以帮助确定胎盘功能与胎儿发育之间的联系。

Protocol

所有程序均按照联邦法规和爱荷华大学政策执行,并得到机构动物护理和使用委员会的批准。 1. 畜牧业 将动物保持在12小时的日光循环 中,随意进食和水。 使用8-15周龄的CD-1雌性小鼠。使用交配插头的存在来识别 E0.5。 在E0.5上,单独容纳怀孕的水坝。 2. 微量移液器的校准 注…

Representative Results

一般手术结果(图6)在这项研究中,有三个纵的组。这些包括注射普通CRISPR Cas9对照质粒(Cas9对照),活化对照CRISPR质粒(行动对照)或IGF-1 SAM活化质粒(Igf1-OE)的胎盘。Cas9对照更适合敲除质粒,活化对照更适合过表达/活化质粒。为了评估通过注射和电穿孔操纵胎盘引起的活力变化,在E14.5上分析了垫料中的胚胎存活率(<strong cla…

Discussion

胎盘是胎儿生长的主要调节因子,如前所述,胎盘基因表达或功能的变化可能会显着影响胎儿发育6。这里概述的方案可用于使用相对先进的手术方法对小鼠胎盘进行靶向体内CRISPR操作。该技术允许大量可存活的胚胎及其相应的胎盘,可用于进一步研究(图6AB)。这项技术使我们能够成功地在E14.5上过表达胎盘IGF-1(<strong class="xfi…

Disclosures

The authors have nothing to disclose.

Acknowledgements

作者承认以下资金来源:R01 MH122435,NIH T32GM008629和NIH T32GM145441。作者感谢Val Sheffield博士和Calvin Carter博士在爱荷华大学的实验室使用他们的手术室和设备,以及Eric Van Otterloo博士,Nandakumar Narayanan博士和Matthew Weber博士在显微镜方面的帮助。作者还感谢Sara Maurer博士,Maya Evans和Sreelekha Kundu对试点手术的帮助。

Materials

1.5 ml Tubes USA Scientific Inc 1615-5500
4% Paraformeldhyde (PFA) in PBS Thermo Fisher Scientific J61899.AP
96 Well plate Cornings 3598 For BCA kit
Absorbent Underpads Fisher Scientific 14-206-62
Activation Control Plasmid Santa Cruz Biotechnology sc-437275 Dnase-free water provided for dilution
AMV Reverse Transcriptase New England Biolabs M0277L Use for cDNA synthesis
Anesthetic Gas Vaporizor Vetamac VAD-601TT VAD-compact vaporizer
Artifical Tear Gel Akorn NDC 59399-162-35
BCA Protein Assay Kit Thermo Fisher Scientific 23227 Protein quantification
Biovortexer Bellco Glass, Inc. 198050000 Hand-held tissue homogenizer
CellSens Software Olympus V4.1.1 Image processing to FISH images.
Centrifuge 5810 Eppendorf EP022628168 Plate centrifuge
Chloroform Thermo Fisher Scientific J67241-AP RNA isolation
Cotton Tipped Applicators ProAdvantage 77100 Sterilize before use
CRISPR/Cas9 Control Plasmid Santa Cruz Biotechnology sc-418922 Dnase-free water provided for dilution
CryoStat Leica CM1950
Dissection Microscope Leica M125 C Used for post-necroscopy imaging
Dissolvable Sutures Med Vet International J385H
Distilled Water Gibco 15230162
Dulbecco's Phosphate Buffered Saline (DPBS) Thermo fisher Scientific 14190144 (-) Calcium; (-) Magnesium
ECM 830 Electro Electroporator (Electroporation Machine) BTX Harvard Apparatus 45-0662 Generator only
Electric Razor Wahl CL9990 Kent Scientific
Electroporation paddles/Tweezertrodes BTX Harvard Apparatus 45-0487 3 mm diameter paddles; wires included
Embedding Cassette: 250 PK Grainger 21RK94 Placenta embedding cassettes
Ethanol Thermo Fisher Scientific 268280010
F-Air Canisters Penn Veterinary Supply Inc BIC80120 Excess isoflurane filter
Fast Green Dye FCF Sigma F7252-5G Dissolve to 1 μg/ml and filter; protect from light
Filter-based microplate photometer (plate reader) Fisher Scientific 14377576 Can be used for BCA and ELISA
Forceps VWR 82027-386 Fine tips, straight, serrated
Formalin solution, neutral buffered, 10% Sigma Aldrich HT501128
Glass Capillaries – Borosilicate Glass (Micropipette) Sutter Instrument B150-86-10 O.D.: 1.5 mm, I.D.: 0.86 mm, 10 cm length
Halt Protease and Phosphotase inhibitor cocktail (100x) Thermo Scientific 1861281 Protein homogenization buffer
Heating Pad Thermotech S766D Digitial Moist Heating Pad
Hemostats VWR 10806-188 Fully surrated jaw; curved
Hot Water Bath Fisher Scientific 20253 Isotemp 205
Igf-1 SAM Plasmid (m1) Santa Cruz Biotechnology sc-421056-ACT Dnase-free water provided for dilution
Induction Chamber Vetamac 941443 No specific liter size required
Isoflurane Piramal Pharma Limited NDC 66794-013-25
Isoproponal/2-Proponal Fisher Scientific A451-4 RNA isolation
Ketamine HCl 100mg/ml Akorn NDC 59399-114-10
MgCl2/Magneisum Chloride Sigma Aldrich 63069-100ML 1M. Protein homogenization buffer
MicroAmp™ Optical 384-Well Reaction Plate with Barcode Fisher Scientific 4309849 Barcoded plates not required
Microcapillary Tip Eppendorf 5196082001 Attached to BTX Microinjector
Microinjector BTX Harvard Apparatus 45-0766 Stainless Steel Pipette Holder, 130 mm Length, for 1 to 1.5 mm Pipettes
Microject 1000A (Injection Machine) BTX Harvard Apparatus 45-0751 MicroJect 1000A Plus System
Micropipette Puller Model P-97 Sutter Instrument P-97 Flaming/Brown type micropipette puller
Microplate Mixer (Plate Shaker) scilogex 822000049999
Mouse/Rat IGF-I/IGF-1 Quantikine ELISA Kit R & D Systems MG100
Needles BD – Becton, Dickson, and Company 305106 30 Gx 1/2 (0.3 mm x 13 mm)
Nitrogen Tank Linde 7727-37-9 Any innert gas
Non-Steroidal Anti-Inflammatory Drug (NSAID) Norbrook Laboratories Limited NDC 55529-040-10 Analesgic such as Meloxicam
Nose Cone Vetamac 921609 9-14 mm
Opal 620 detection dye Akoya Biosciences SKU FP1495001KT Used for FISH
Optimal Cutting Temperature (O.C.T) Compound Sakura 4583
Oxygen Tank Linde 7782 – 44 – 7 Medical grade oxygen
Pestles USA Scientific Inc 14155390
Povidone-Iodine Solution, 5% Avrio Health L.P. NDC 67618-155-16
Power SYBR™ Green PCR Master Mix Thermo Fisher Scientific 4367659 Use for qPCR
Random Hexamers (Random Primers) New England Biolabs S1330S Use for cDNA synthesis
Razor Blade Grainger 26X080
RNA Cleanup Kit & Concentrator Zymo Research R1013
RNALater Thermo Fisher Scientific AM7021
RNAscope kit v.2.5 Advanced Cells Diagnostics 323100 Contains all reagents required for fluorescent in situ hybridization. Probes sold separately.
RNAscope™ Probe- Mm-Prl8a8-C2 Advanced Cells Diagnostics  528641-C2
RNAscope™ Probe- Vector-dCas9-3xNLS-VP64 Advanced Cells Diagnostics 527421
Roto-Therm Mini Benchmark R2020 Dry oven for in situ hybridization
Scissors VWR 82027-578 Dissecting Scissors, Sharp Tip, 4¹/₂
Sodium Chloride (Saline) Hospra NDC 0409-4888-03 Sterile,  0.9%
Sodium Citrate, Trisodium Salt, Dihydrate, [Citric Acid, Trisodium Dihydrate] Research Product International 03-04-6132
Sodium Hydroxide 1N Concentrate, Fisher Chemical Fisher Scientific SS277 Protein homogenization buffer
Steamer Bella B00DPX8UBA
Sterile Surgical Drape Busse 696 Sterilize before use
Superfrost Plus Microscope Slides Fisher Scientific 12-550-15
Surgipath Cover Glass 24×60 Leica 3800160
Syringes BD – Becton, Dickson, and Company 309659 BD Luer Slip Tip Syringe sterile, single use, 1 mL
Thermo Scientific™ Invitrogen™ Nanodrop™ One Spectrophotometer with WiFi and Qubit™ 4 Fluorometer Fisher Scientific 13-400-525 This configuration comes with Qubit 4 fluorometer.  Qubit quantification not required.
Tissue Adhesive 3M 1469SB VetBond
Tris HCl Thermo Fisher Scientific 15568025 1M. Protein homogenization buffer
TRIzol™ Reagent Thermo Fisher Scientific 15596018 RNA isolation
TSA Buffer Pack Advanced Cells Diagnostics 322810 Used to dilute Opal 620 detection dye
Universal F-Circuit Vetamac 40200 Attached to vaporizer and vaporizer accessories
Upright Compound Fluorescence Microscope Olympus BX61VS Used for FISH imaging
Vectorshield with DAPI Vector Laboratories H-1200 Coverslip mounting media
ViiA™ 7 Real-Time PCR System with 384-Well Block Thermo Fisher Scientific 4453536 This is for SYBR 384-well block detection.  TaqMan and/or smaller blocks available
Wet n Wild Nail Polish Wild Shine, Clear Nail Protector, Nail Color Amazon C450B
Xylazine 20mg/ml Anased 343730_RX

References

  1. Cross, J. C., et al. Genes, development and evolution of the placenta. Placenta. 24 (2-3), 123-130 (2003).
  2. Perez-Garcia, V., et al. Placentation defects are highly prevalent in embryonic lethal mouse mutants. Nature. 555 (7697), 463-468 (2018).
  3. Rosenfeld, C. S. The placenta-brain-axis. Journal of Neuroscience Research. 99 (1), 271-283 (2021).
  4. Maslen, C. L. Recent advances in placenta-heart interactions. Frontiers in Physiology. 9, 735 (2018).
  5. Kundu, S., Maurer, S. V., Stevens, H. E. Future horizons for neurodevelopmental disorders: Placental mechanisms. Frontiers in Pediatrics. 9, 653230 (2021).
  6. Woods, L., Perez-Garcia, V., Hemberger, M. Regulation of placental development and its impact on fetal growth-new insights from mouse models. Frontiers in Endocrinology. 9, 570 (2018).
  7. Goeden, N., et al. Maternal Inflammation disrupts fetal neurodevelopment via increased placental output of serotonin to the fetal brain. Journal of Neuroscience. 36 (22), 6041-6049 (2016).
  8. vander Bom, T., et al. The changing epidemiology of congenital heart disease. Nature Reviews Cardiology. 8 (1), 50-60 (2011).
  9. Wilson, R. L., et al. Analysis of commonly expressed genes between first trimester fetal heart and placenta cell types in the context of congenital heart disease. Scientific Reports. 12 (1), 10756 (2022).
  10. Renaud, S. J., Karim Rumi, M. A., Soares, M. J. Review: Genetic manipulation of the rodent placenta. Placenta. 32, S130-S135 (2011).
  11. Wenzel, P. L., Leone, G. Expression of Cre recombinase in early diploid trophoblast cells of the mouse placenta. Genesis. 45 (3), 129-134 (2007).
  12. Zhou, C. C., et al. Targeted expression of Cre recombinase provokes placental-specific DNA recombination in transgenic mice. PLoS One. 7 (2), e29236 (2012).
  13. Wattez, J. S., Qiao, L., Lee, S., Natale, D. R. C., Shao, J. The platelet-derived growth factor receptor alpha promoter-directed expression of cre recombinase in mouse placenta. Developmental Dynamics. 248 (5), 363-374 (2019).
  14. Nadeau, V., et al. Map2k1 and Map2k2 genes contribute to the normal development of syncytiotrophoblasts during placentation. Development. 136 (8), 1363-1374 (2009).
  15. Chakraborty, D., Muto, M., Soares, M. J. Ex vivo trophoblast-specific genetic manipulation using lentiviral delivery. BioProtocol. 7 (24), e2652 (2017).
  16. Okada, Y., et al. Complementation of placental defects and embryonic lethality by trophoblast-specific lentiviral gene transfer. Nature Biotechnology. 25 (2), 233-237 (2007).
  17. Lecuyer, M., et al. a placental marker of fetal brain defects after in utero alcohol exposure. Acta Neuropathologica Communications. 5 (1), 44 (2017).
  18. Jones, H. N., Crombleholme, T., Habli, M. Adenoviral-mediated placental gene transfer of IGF-1 corrects placental insufficiency via enhanced placental glucose transport mechanisms. PLoS One. 8 (9), e74632 (2013).
  19. Jones, H., Crombleholme, T., Habli, M. Regulation of amino acid transporters by adenoviral-mediated human insulin-like growth factor-1 in a mouse model of placental insufficiency in vivo and the human trophoblast line BeWo in vitro. Placenta. 35 (2), 132-138 (2014).
  20. Song, A. J., Palmiter, R. D. Detecting and avoiding problems when using the Cre-lox system. Trends in Genetics. 34 (5), 333-340 (2018).
  21. Chuah, M. K., Collen, D., VandenDriessche, T. Biosafety of adenoviral vectors. Current Gene Therapy. 3 (6), 527-543 (2003).
  22. Evers, B., et al. CRISPR knockout screening outperforms shRNA and CRISPRi in identifying essential genes. Nature Biotechnology. 34 (6), 631-633 (2016).
  23. Rossant, J., Cross, J. C. Placental development: Lessons from mouse mutants. Nature Reviews Genetics. 2 (7), 538-548 (2001).
  24. Elmore, S. A., et al. Histology atlas of the developing mouse placenta. Toxicologic Pathology. 50 (1), 60-117 (2022).
  25. Sferruzzi-Perri, A. N., Sandovici, I., Constancia, M., Fowden, A. L. Placental phenotype and the insulin-like growth factors: Resource allocation to fetal growth. The Journal of Physiology. 595 (15), 5057-5093 (2017).
  26. Agrogiannis, G. D., Sifakis, S., Patsouris, E. S., Konstantinidou, A. E. Insulin-like growth factors in embryonic and fetal growth and skeletal development (Review). Molecular Medicine Reports. 10 (2), 579-584 (2014).
  27. Wang, L., Jiang, H., Brigande, J. V. Gene transfer to the developing mouse inner ear by in vivo electroporation. Journal of Visualized Experiments. (64), e3653 (2012).
  28. Elser, B. A., et al. Combined maternal exposure to cypermethrin and stress affect embryonic brain and placental outcomes in mice. Toxicological Sciences. 175 (2), 182-196 (2020).
  29. Gumusoglu, S. B., et al. Chronic maternal interleukin-17 and autism-related cortical gene expression, neurobiology, and behavior. Neuropsychopharmacology. 45 (6), 1008-1017 (2020).
  30. Liu, F., Huang, L. Electric gene transfer to the liver following systemic administration of plasmid DNA. Gene Therapy. 9 (16), 1116-1119 (2002).
  31. Kalli, C., Teoh, W. C., Leen, E. Introduction of genes via sonoporation and electroporation. Advances in Experimental Medicine and Biology. 818, 231-254 (2014).
  32. Wu, W., et al. Efficient in vivo gene editing using ribonucleoproteins in skin stem cells of recessive dystrophic epidermolysis bullosa mouse model. Proceedings of the National Academy of Sciences of the United States of America. 114 (7), 1660-1665 (2017).
  33. Nakamura, H. . Electroporation and Sonoporation in Developmental Biology. , (2009).
  34. Bond, A. M., et al. Differential timing and coordination of neurogenesis and astrogenesis in developing mouse hippocampal subregions. Brain Sciences. 10 (12), 909 (2020).
  35. Kojima, Y., Tam, O. H., Tam, P. P. Timing of developmental events in the early mouse embryo. Seminars in Cell & Developmental Biology. 34, 65-75 (2014).
  36. Pennington, K. A., Schlitt, J. M., Schulz, L. C. Isolation of primary mouse trophoblast cells and trophoblast invasion assay. Journal of Visualized Experiments. (59), e3202 (2012).
  37. Mandegar, M. A., et al. CRISPR Interference efficiently induces specific and reversible gene silencing in human iPSCs. Cell Stem Cell. 18 (4), 541-553 (2016).
  38. Dai, Z., et al. Inducible CRISPRa screen identifies putative enhancers. Journal of Genetics and Genomics. 48 (10), 917-927 (2021).
  39. Ursini, G., et al. Placental genomic risk scores and early neurodevelopmental outcomes. Proceedings of the National Academy of Sciences of the United States of America. (7), e2019789118 (2021).
  40. Smajdor, A. Ethical challenges in fetal surgery. Journal of Medical Ethics. 37 (2), 88-91 (2011).
  41. Antiel, R. M. Ethical challenges in the new world of maternal-fetal surgery. Seminars in Perinatology. 40 (4), 227-233 (2016).
check_url/64760?article_type=t

Play Video

Cite This Article
Carver, A. J., Taylor, R. J., Stevens, H. E. Mouse In Vivo Placental Targeted CRISPR Manipulation. J. Vis. Exp. (194), e64760, doi:10.3791/64760 (2023).

View Video