Summary

植物細胞タイプの単離とトランスクリプトーム解析

Published: April 07, 2023
doi:

Summary

ハイスループットscRNA-seqメソッドの実現可能性と有効性は、植物研究におけるシングルセル時代の到来を告げるものです。ここでは、シ ロイヌナズ ナの根の特定の細胞タイプを単離し、その後のトランスクリプトームライブラリの構築と解析を行うための堅牢で完全な手順を紹介します。

Abstract

多細胞生物では、発生プログラミングと環境応答は、異なる細胞タイプまたは細胞内でさえ非常に異なる可能性があり、これは細胞の不均一性として知られています。近年、次世代シーケンシング(NGS)技術と組み合わせたシングルセルおよびセルタイプの分離は、シングルセル分解能で生物学的プロセスを研究するための重要なツールになっています。しかしながら、植物細胞壁が存在するため、植物細胞を単離することは比較的困難であり、それは植物における単一細胞アプローチの適用を制限する。このプロトコルは、植物細胞による蛍光活性化セルソーティング(FACS)ベースのシングルセルおよびセルタイプの分離のための堅牢な手順を説明しており、ダウンストリームのマルチオミクス解析やその他の研究に適しています。 シロイヌナ ズナの根蛍光マーカー株を用いて、木部極周回細胞、側根初期細胞、側根冠細胞、皮質細胞、内胚葉細胞などの特定の細胞種がどのように分離されるかを示します。さらに、Smart-seq2を用いた効果的なダウンストリームトランスクリプトーム解析法も提供します。細胞単離法とトランスクリプトーム解析技術は、他の細胞種や植物種にも適応でき、植物科学に幅広い応用の可能性を秘めています。

Introduction

細胞はすべての生物の基本単位であり、構造的および生理学的機能を果たします。多細胞生物の細胞は見かけのシンクロニシティを示しますが、異なる種類の細胞や個々の細胞は、発生中のトランスクリプトームと環境応答に違いを示します。ハイスループットシングルセルRNAシーケンシング(scRNA-seq)は、細胞の不均一性を理解するための前例のないパワーを提供します。scRNA-seqを植物科学に応用することは、植物細胞アトラスの構築に成功し1、植物組織2の希少な細胞分類群の同定に使用され、植物組織における細胞タイプの組成に関する洞察を提供し、細胞同一性と植物の発生および分化に使用される重要な機能を特定するために使用されてきました。さらに、植物組織1,2,3における時空間発生軌跡を推測して新しいマーカー遺伝子を発見し4、scRNA-seqを用いて重要な転写因子5の機能を研究することで、異なる植物における同じ細胞種の進化的保存を明らかにすることができます3.非生物的ストレスは、植物の成長と発達に対する最も重要な環境影響の一つです。シングルセルトランスクリプトームシーケンシングを通じて、さまざまな処理条件下での植物組織の細胞タイプの組成の変化を調べることにより、非生物的ストレス応答メカニズムを解明することもできます6

scRNAシーケンシングを使用して細胞タイプ間の転写不均一性を解決できる可能性は、細胞分離方法とシーケンシングプラットフォームによって異なります。蛍光活性化セルソーティング(FACS)は、光散乱と細胞の蛍光特性に基づいてscRNA-seqの細胞の亜集団を単離するために広く使用されている技術です。トランスジェニック技術による蛍光マーカー株の開発により、FACS7による細胞単離の効率が大幅に向上しました。Smart-seq28を用いてscRNA-seqを実施すると、細胞の不均一性を解剖する能力がさらに高まります。Smart-seq2法は遺伝子検出感度が高く、転写物入力量が少ない場合でも遺伝子を検出できます9。バルクセルタイプの収集に加えて、最新のセルソーターはシングルセルインデックスソーティングフォーマットを提供し、Smart-seq210またはCEL-seq211などの他のマルチプレックスRNA-seqメソッドを使用してシングルセル分解能でトランスクリプトーム解析を可能にします。シングルセルまたはセルタイプのソーティングは、並行マルチオミクス研究など、他の多くのダウンストリームアプリケーションに使用できる可能性があります12,13。ここでは、FACSによってシロイヌナズナマーカー細胞株の根から木部極周回細胞、側根冠細胞、側根初期細胞、皮質細胞、内胚葉細胞などの植物細胞タイプを単離するための堅牢で汎用性の高いプロトコルを紹介します。このプロトコルには、ダウンストリームトランスクリプトーム解析用のSmart-seq2ライブラリの構築もさらに含まれます。

Protocol

以下のプロトコルは、次の根細胞タイプの蛍光および蛍光マーカーラインを持たないA. thaliana野生型(WT)種子用に最適化されています:木部極周環状細胞(J0121)、側根初期細胞、側根冠細胞(J3411)、内皮および皮質細胞(J0571)(図1A)。以前に発表された第14報告書に続いて、GATA23プロモーター駆動GFP構築物を野生型シロイヌナズナ植物に導入するこ…

Representative Results

プロトプラスト単離このプロトコルは、蛍光 A.タリアナ 根マーカー株のプロトプラストソーティングに有効です。これらのマーカー株は、蛍光タンパク質と標的細胞型で特異的に発現する遺伝子との融合、またはエンハンサートラップ株の使用によって開発されました(図1)。多数の組織や臓器が、モデル植物や作物で特定の蛍光マーカーを発現す…

Discussion

Smart-seq2ベースのプロトコルは、数百のセルから信頼性の高いシーケンシングライブラリを生成できます8。出発物質の品質は、トランスクリプトーム解析の精度に不可欠です。FACSは目的の細胞を調製するための強力なツールですが、この手順、特にプロトプラストステップは、植物用途に最適化する必要があります。レーザーキャプチャーマイクロダイセクション(LCM)また?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

このプロトコルは、上海交通大学農生物学部のシングルセルマルチオミクス施設で設定され、中国国家自然科学財団(助成金番号32070608)、上海浦江プログラム(助成金番号20PJ1405800)、上海交通大学(助成金番号Agri-X20200202、2019TPB05)の支援を受けました。

Materials

0.22 µm strainer Sorfa  622110
Agar Yeasen 70101ES76
Agilent fragment analyzer Aglient Aglient 5200
Agilent high-sensitivity DNA kit Aglient DNF-474-0500
Ampure XP beads BECKMAN A63881
Betaine yuanye S18046-100g
Bleach Mr Muscle FnBn83BK 20% (v/v) bleach
BSA sigma 9048-46-8
CaCl2 yuanye S24109-500g
Cellulase R10 Yakult (Japan) 9012-54-8
Cellulase RS Yakult (Japan) 9012-54-8
Centrifuge tube (1.5 mL) Eppendolf 30121589
DNase, RNase, DNA and RNA Away Surface Decontaminants Beyotime R0127
dNTPs (10 mM) NEB N0447S
DTT (0.1 M)
invitrogen
18090050
Ethanol Sinopharm Chemical Reagent Co., Ltd 100092680
FACS BD FACS Melody BD-65745
FACS Sony SH800S
Filter tip  (1000 µL) Thermo Scientific TF112-1000-Q
Filter tip  (200 µL) Thermo Scientific TF140-200-Q
Filter tip (10 µL) Thermo Scientific TF104-10-Q
Filter tip (100 µL) Thermo Scientific TF113-100-Q
Fluorescent microscope Nikon Eclipse Ni-E
Four-Dimensional Rotating Mixer Kylin -Bell BE-1100
Hemicellulase sigma 9025-56-3
IS PCR primer 5'-AAGCAGTGGTATCAACGCAGAG
T-3'
KAPA HiFi HotStart ReadyMix(2X) Roche  7958935001
KCl Sinopharm Chemical Reagent Co., Ltd 7447-40-7
Macerozyme R10 Yakult (Japan) 9032-75-1
Magnetic separation stand invitrogen 12321D
Mannitol aladdin 69-65-8
MES aladdin 145224948
MgCl2  yuanye R21455-500ml
Microcentrifuges Eppendorf Centrifuge 5425
Micro-mini-centrifuge Titan Timi-10k
MS Phytotech M519
Nextera XT DNA Library Preparation Kit illumina FC-131-1024
oligo-dT30VN primer 5'-AAGCAGTGGTATCAACGCAGAG
TACTTTTTTTTTTTTTTTTTTTTTTT
TTTTTTTTTTVN-3'
PCR instrument Thermal cycler A24811
Pectolyase Yakult (Japan) 9033-35-6
Plant marker lines Nottingham Arabidopsis Stock Centre (NASC)
Qubit 1x dsDNA HS Assay Kit invitrogen Q33231
Qubit 2.0 fluorometer invitrogen Q32866
RNase inhibitor  Thermo Scientific EO0382
RNase-free water invitrogen 10977023
Solution A 400 mM mannitol, 0.05 % BSA , 20 mM MES (pH5.7), 10 mM CaCl2, 20 mM KCl
Solution B 1 % (w/v)cellulase R10, 1 % (w/v) cellulase RS, 1 %  (w/v)hemicellulase, 0.5 %  (w/v)pectolyase and 1 %  (w/v) Macerozyme R10 of in a fresh aliquot of solution A
Sterile pestle BIOTREAT 453463
Strainer (40 µm ) Sorfa  251100
Superscript enzyme (200 U/µL) invitrogen 18090050
SuperScript VI buffer (5x) invitrogen 18090050
T0est tube (5 mL) BD Falcon 352052
Thin-walled PCR tubes with caps (0.5 mL) AXYGEN PCR-05-C
Triton X-100 Sangon Biotech A600198-0500
TSO primer 5'-AAGCAGTGGTATCAACGCAGAG
TACATrGrG+G-3'
Vortex Titan VM-T2

References

  1. Zhang, T. -. Q., Chen, Y., Liu, Y., Lin, W. -. H., Wang, J. -. W. Single-cell transcriptome atlas and chromatin accessibility landscape reveal differentiation trajectories in the rice root. Nature Communications. 12 (1), 2053 (2021).
  2. Denyer, T., et al. Spatiotemporal developmental trajectories in the Arabidopsis root revealed using high-throughput single-cell RNA sequencing. Developmental Cell. 48 (6), 840-852 (2019).
  3. Liu, Q., et al. Transcriptional landscape of rice roots at the single-cell resolution. Molecular Plant. 14 (3), 384-394 (2021).
  4. Liu, Z., et al. Global dynamic molecular profiling of stomatal lineage cell development by single-cell RNA sequencing. Molecular Plant. 13 (8), 1178-1193 (2020).
  5. Shahan, R., et al. A single-cell Arabidopsis root atlas reveals developmental trajectories in wild-type and cell identity mutants. Developmental Cell. 57 (4), 543-560 (2022).
  6. Wendrich, J. R., et al. Vascular transcription factors guide plant epidermal responses to limiting phosphate conditions. Science. 370 (6518), (2020).
  7. Carter, A. D., Bonyadi, R., Gifford, M. L. The use of fluorescence-activated cell sorting in studying plant development and environmental responses. The International Journal of Developmental Biology. 57 (6-8), 545-552 (2013).
  8. Picelli, S., et al. Full-length RNA-seq from single cells using Smart-seq2. Nature Protocols. 9 (1), 171-181 (2014).
  9. Wang, X., He, Y., Zhang, Q., Ren, X., Zhang, Z. Direct comparative analyses of 10X genomics chromium and Smart-seq2. Genomics Proteomics Bioinformatics. 19 (2), 253-266 (2021).
  10. Serrano-Ron, L., et al. Reconstruction of lateral root formation through single-cell RNAsequencing reveals order of tissue initiation. Molecular Plant. 14 (8), 1362-1378 (2021).
  11. Hashimshony, T., et al. CEL-Seq2: Sensitive highly-multiplexed single-cell RNA-Seq. Genome Biology. 17, 77 (2016).
  12. Macaulay, I. C., et al. G&T-seq: Parallel sequencing of single-cell genomes and transcriptomes. Nature Methods. 12 (6), 519-522 (2015).
  13. Angermueller, C., et al. Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity. Nature Methods. 13 (3), 229-232 (2016).
  14. De Rybel, B., et al. A novel aux/IAA28 signaling cascade activates GATA23-dependent specification of lateral root founder cell identity. Current Biology. 20 (19), 1697-1706 (2010).
  15. Duncombe, S. G., Barnes, W. J., Anderson, C. T. Imaging the delivery and behavior of cellulose synthases in Arabidopsis thaliana using confocal microscopy. Methods in Cell Biology. 160, 201-213 (2020).
  16. Levy, S. E., Myers, R. M. Advancements in next-generation sequencing. Annual Review of Genomics and Human Genetics. 17 (1), 95-115 (2016).
  17. Ooi, C. C., et al. High-throughput full-length single-cell mRNA-seq of rare cells. PLoS One. 12 (11), e0188510 (2017).
  18. Pertea, M., Kim, D., Pertea, G. M., Leek, J. T., Salzberg, S. L. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nature Protocols. 11 (9), 1650-1667 (2016).
  19. Tsyganov, K., Perry, A., Archer, S., Powell, D. RNAsik: A Pipeline for complete and reproducible RNA-seq analysis that runs anywhere with speed and ease. Journal of Open Source Software. 3, 583 (2018).
  20. Love, M. I., Huber, W., Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology. 15 (12), 550 (2014).
  21. Kamiya, T., et al. The MYB36 transcription factor orchestrates Casparian strip formation. Proceedings of the National Academy of Sciences of the United States of America. 112 (33), 10533-10538 (2015).
  22. Zhang, Y., et al. Two types of bHLH transcription factor determine the competence of the pericycle for lateral root initiation. Nature Plants. 7 (5), 633-643 (2021).
  23. Haecker, A., et al. Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana. Development. 131 (3), 657-668 (2004).
  24. Chen, Q., et al. Auxin overproduction in shoots cannot rescue auxin deficiencies in Arabidopsis roots. Plant Cell Physiol. 55 (6), 1072-1079 (2014).
  25. Nichterwitz, S., et al. Laser capture microscopy coupled with Smart-seq2 for precise spatial transcriptomic profiling. Nature Communications. 7, 12139 (2016).
  26. Long, J., et al. Nurse cell–derived small RNAs define paternal epigenetic inheritance in Arabidopsis. Science. 373 (6550), (2021).
  27. Gutzat, R., et al. Arabidopsis shoot stem cells display dynamic transcription and DNA methylation patterns. EMBO Journal. 39 (20), e103667 (2020).

Play Video

Cite This Article
Zhang, J., Ahmad, M., Xie, R., Gao, H. Isolation and Transcriptome Analysis of Plant Cell Types. J. Vis. Exp. (194), e64913, doi:10.3791/64913 (2023).

View Video