Summary

Протокол сдвигового анализа для определения свойств одноячеистого материала

Published: May 19, 2023
doi:

Summary

В этом протоколе описывается количественная оценка механических свойств раковых и нераковых клеточных линий in vitro. Консервативные различия в механике раковых и нормальных клеток могут выступать в качестве биомаркера, который может иметь значение для прогноза и диагностики.

Abstract

Нерегулярная биомеханика является отличительной чертой биологии рака, подлежащей обширному изучению. Механические свойства ячейки аналогичны свойствам материала. Устойчивость клетки к стрессу и напряжению, время ее релаксации и ее эластичность — все это свойства, которые можно вывести и сравнить с другими типами клеток. Количественная оценка механических свойств раковых (злокачественных) и нормальных (незлокачественных) клеток позволяет исследователям глубже раскрыть биофизические основы этого заболевания. Хотя известно, что механические свойства раковых клеток постоянно отличаются от механических свойств нормальных клеток, стандартная экспериментальная процедура для определения этих свойств из клеток в культуре отсутствует.

В этой статье описывается процедура количественной оценки механических свойств отдельных клеток in vitro с использованием анализа сдвига жидкости. Принцип, лежащий в основе этого анализа, заключается в приложении напряжения сдвига жидкости к одной ячейке и оптическом мониторинге результирующей клеточной деформации с течением времени. Механические свойства ячеек впоследствии характеризуются с помощью анализа цифровой корреляции изображений (DIC) и подгонки соответствующей вязкоупругой модели к экспериментальным данным, полученным в результате ДВС-анализа. В целом, протокол, изложенный здесь, направлен на обеспечение более эффективного и целенаправленного метода диагностики трудно поддающихся лечению видов рака.

Introduction

Изучение биофизических различий между раковыми и нераковыми клетками открывает новые диагностические и терапевтические возможности1. Понимание того, как различия в биомеханике/механобиологии способствуют прогрессированию опухоли и резистентности к лечению, откроет новые возможности для таргетной терапии и ранней диагностики2.

Хотя известно, что механические свойства раковых клеток отличаются от нормальных клеток (например, вязкоупругость плазматической мембраны и ядерной оболочки)3,4,5, надежные и воспроизводимые методы измерения этих свойств в живых клеткахотсутствуют6. Метод сдвигового анализа используется для количественной оценки механических свойств клеток путем воздействия на отдельные клетки напряжения сдвига жидкости и анализа их индивидуальных реакций и сопротивления приложенному напряжению 3,4,5,7,8,9. Хотя для характеристики механических свойств отдельных клеток использовалось несколько методов и приемов, они, как правило, влияют на свойства клеточного материала путем i) перфорации/повреждения клеточной мембраны из-за глубины вдавливания, сложной геометрии наконечника или жесткости подложки, связанной с атомно-силовой микроскопией (АСМ)10,11, ii) индуцирования клеточного фотоповреждения во время оптического захвата 12, 13, или iii) индуцирование сложных стрессовых состояний, связанных с аспирацией микропипеток14,15. Эти внешние эффекты связаны со значительными неопределенностями в точности измерений вязкоупругости клеток 6,16,17.

Чтобы устранить эти ограничения, описанный здесь метод анализа сдвига обеспечивает высококонтролируемый и простой подход к моделированию физиологического потока в организме без влияния на свойства клеточного материала в процессе. Напряжения сдвига жидкости в этом анализе представляют собой механические напряжения, испытываемые клетками организма либо жидкостями внутри опухолевого интерстиция, либо в крови во время циркуляции18,19,20. Кроме того, эти жидкостные стрессы способствуют различному злокачественному поведению раковых клеток, включая прогрессирование, миграцию, метастазирование и гибель клеток 19,21,22,23, которые варьируются между онкогенными и неопухолевыми клетками. Более того, измененные механические особенности раковых клеток (т.е. они часто «мягче», чем нормальные клетки, обнаруженные в том же органе) позволяют им сохраняться во враждебном микроокружении опухоли, проникать в окружающие нормальные ткани и метастазировать в отдаленные участки24,25,26. Создавая псевдобиологическую среду, в которой клетки испытывают физиологические уровни напряжения сдвига жидкости, достигается процесс, который физиологически актуален и не разрушает клетку. Клеточные реакции на эти приложенные напряжения сдвига жидкости позволяют нам охарактеризовать механические свойства клеток.

В этой статье представлен протокол анализа сдвига для обширного изучения механических свойств и поведения раковых и нераковых клеток при приложенном напряжении сдвига. Клетки реагируют на внешние силы упругим и вязким образом и поэтому могут быть идеализированы как вязкоупругий материал3. Этот метод подразделяется на: (i) клеточную культуру дисперсных одиночных клеток, (ii) контролируемое применение напряжения сдвига жидкости, (iii) визуализацию in situ и наблюдение за клеточным поведением (включая устойчивость к стрессу и деформации), (iv) анализ деформации клеток для определения степени деформации и (v) характеристика вязкоупругих свойств отдельных клеток. Исследуя эти механические свойства и поведение, сложная клеточная механобиология может быть преобразована в количественные данные. Протокол, описывающий этот метод, позволяет каталогизировать и сравнивать различные злокачественные и незлокачественные типы клеток. Количественная оценка этих различий может привести к установлению диагностических и терапевтических биомаркеров.

Protocol

1. Подготовка к одноклеточному сдвиговому анализу Клеточная культураЗасейте около 50 000 суспендированных одиночных клеток в чашку Петри размером 35 мм x 10 мм, содержащую 2 мл питательной среды.ПРИМЕЧАНИЕ: Перед посевом встряхните взвешенные ячейки, чтобы разбить агре?…

Representative Results

Протокол анализа сдвига в сочетании с анализом деформации с использованием DIC и вязкоупругой модели успешно определяет механические свойства одной ячейки in vitro. Этот метод был протестирован на клеточных линиях человека и мышей, включая нормальные клетки молочной железы человека (…

Discussion

Метод сдвигового анализа, который включает в себя создание псевдомеханобиологической среды для моделирования взаимодействия клеток с окружающим механическим микроокружением и их реакции на механические нагрузки, позволил создать каталог клеточных механических свойств, закономерн?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Авторы благодарят предыдущих исследователей из группы Собоеджо в Вустерском политехническом институте, которые первыми применили эту технику: докторов Ифан Цао, Цзинцзе Ху и Ванессу Узонванне. Эта работа была поддержана Национальным институтом рака (NIH / NCI K22 CA258410 по MD). Фигуры были созданы с помощью BioRender.com.

Materials

CELL CULTURE
.25% Trypsin, 2.21 mM EDTA, 1x[-] sodium bicarbonate Corning 25-053-ci For cellular detachment from substrate in cell culture
15 mL centrifuge tubes Falcon by Corning 05-527-90
35 mm Petri dishes Corning 430165
50 mL centrifuge tubes Falcon by Corning 14-432-22
centrifuge any For sterile cell culture
Dulbecco's Modification of Eagle's Medium (DMEM) 1x Corning 10-013-cv Or any other media for culturing cells. DMEM was used for culturing U87 cells
gloves any For sterile cell culture
Heracell Vios 160i CO2 Incubator Thermo Scientific 51033770 For Incubation during cell culture
Hood any For sterile cell culture
micropipette any For sterile cell culture
micropipette tips any For sterile cell culture
Microscope Leica/any For sterile cell culture
Phosphate Buffered Saline without calcium and magnesium PBS, 1x Corning 21-040-CM
pipetman any For sterile cell culture
pipette tips any For sterile cell culture
Precision GP 10 liquid incubator Thermo Scientific TSGP02
T25 flask Corning 430639
T75 flask Corning 430641U
SHEAR ASSAY
100 mL beaker any For creating DMEM + methyl cellulose viscous shear media
DMEM Corning
Flow chamber + rubber gasket Glycotech 31-001 Circular Flow chamber Kit ( for 35 mm tissue culture dishes)
Hybrid Rheometer HR-2 Discovery Hybrid Rheometer For determination of shear fluid viscosity
magnetic stir bar any For creating DMEM + methyl cellulose viscous shear media
magnetic stir plate any For creating DMEM + methyl cellulose viscous shear media
methyl cellulose any To increase viscosity of DMEM in flow media
Syringe Pump KD Scientific Geminin 88 plus 788088 For programming fluid infusion and withdrawal
syringes, tubing, and connectors For shear apparatus setup
SOFTWARE
ABAQUS software Simulia
Digitial Image Correlation software LaVision, Germany DAVIS 10.1.2
Imaging software Leica/any microscope software
MATLAB MATLAB MATLAB_R2020B

References

  1. Sethi, S., Ali, S., Philip, P. A., Sarkar, F. H. Clinical advances in molecular biomarkers for cancer diagnosis and therapy. International Journal of Molecular Sciences. 14 (7), 14771-14784 (2013).
  2. Runel, G., Lopez-Ramirez, N., Chlasta, J., Masse, I. Biomechanical properties of cancer cells. Cells. 10 (4), 887 (2021).
  3. Hu, J., Zhou, Y., Obayemi, J. D., Du, J., Soboyejo, W. O. An investigation of the viscoelastic properties and the actin cytoskeletal structure of triple negative breast cancer cells. Journal of the Mechanical Behavior of Biomedical Materials. 86, 1-13 (2018).
  4. Onwudiwe, K., et al. Investigation of creep properties and the cytoskeletal structures of non-tumorigenic breast cells and triple-negative breast cancer cells. Journal of Biomedical Materials Research. Part A. 110 (5), 1004-1020 (2022).
  5. Ani, C. J., et al. A shear assay study of single normal/breast cancer cell deformation and detachment from poly-di-methyl-siloxane (PDMS) surfaces. Journal of the Mechanical Behavior of Biomedical Materials. 91, 76-90 (2019).
  6. Suresh, S. Biomechanics and biophysics of cancer cells. Acta Biomaterialia. 3 (4), 413-438 (2007).
  7. Cao, Y., et al. Investigation of the viscoelasticity of human osteosarcoma cells using a shear assay method. Journal of Materials Research. 21 (8), 1922-1930 (2006).
  8. Cao, Y. On the measurement of human osteosarcoma cell elastic modulus using shear assay experiments. Journal of Materials Science. Materials in Medicine. 18 (1), 103-109 (2007).
  9. Onwudiwe, K., et al. Actin cytoskeletal structure and the statistical variations of the mechanical properties of non-tumorigenic breast and triple-negative breast cancer cells. Journal of the Mechanical Behavior of Biomedical Materials. 119, 104505 (2021).
  10. Kirmizis, D., Logothetidis, S. Atomic force microscopy probing in the measurement of cell mechanics. International Journal of Nanomedicine. 5, 137-145 (2010).
  11. Haase, K., Pelling, A. E. Investigating cell mechanics with atomic force microscopy. Journal of the Royal Society. Interface. 12 (104), 20140970 (2015).
  12. Zhang, H., Liu, K. K. Optical tweezers for single cells. Journal of the Royal Society. Interface. 5 (24), 671-690 (2008).
  13. Peterman, E. J. G., Gittes, F., Schmidt, C. F. Laser-induced heating in optical traps. Biophysical Journal. 84, 1308-1316 (2003).
  14. Hochmuth, R. M. Micropipette aspiration of living cells. Journal of Biomechanics. 33 (1), 15-22 (2000).
  15. Evans, E., Yeung, A. Apparent viscosity and corticcal tension of blood granulocytes determined by micropipet aspiration. Biophysical Journal. 56 (1), 151-160 (1989).
  16. Van Vliet, K. J., Bao, G., Suresh, S. The biomechanics toolbox: experimental approaches for living cells and biomolecules. Acta Materialia. 51 (19), 5881-5905 (2003).
  17. Moeendarbary, E., Harris, A. R. Cell mechanics: principles, practices, and prospects. Wiley Interdisciplinary Reviews. Systems Biology and Medicine. 6 (5), 371-388 (2014).
  18. Choi, H. Y., et al. Hydrodynamic shear stress promotes epithelial-mesenchymal transition by downregulating ERK and GSK3beta activities. Breast Cancer Research. 21 (1), 6 (2019).
  19. Northcott, J. M., Dean, I. S., Mouw, J. K., Weaver, V. M. Feeling stress: The mechanics of cancer progression and aggression. Frontiers in Cell and Developmental Biology. 6, 17 (2018).
  20. Onwudiwe, K., Najera, J., Siri, S., Datta, M. Do tumor mechanical stresses promote cancer immune escape. Cells. 11 (23), 3840 (2022).
  21. Heldin, C. H., Rubin, K., Pietras, K., Ostman, A. High interstitial fluid pressure – an obstacle in cancer therapy. Nature Reviews. Cancer. 4 (10), 806-813 (2004).
  22. Krog, B. L., Henry, M. D. Biomechanics of the circulating tumor cell microenvironment. Advances in Experimental Medicine and Biology. 1092, 209-233 (2018).
  23. Moose, D. L., et al. Cancer cells resist mechanical destruction in circulation via RhoA/actomyosin-dependent mechano-adaptation. Cell Reports. 30 (11), 3864-3874 (2020).
  24. Mao, B. H., Nguyen Thi, K. M., Tang, M. J., Kamm, R. D., Tu, T. Y. The interface stiffness and topographic feature dictate interfacial invasiveness of cancer spheroids. Biofabrication. 15 (1), (2023).
  25. Kashani, A. S., Packirisamy, M. Cancer cells optimize elasticity for efficient migration. Royal Society Open Science. 7 (10), 200747 (2020).
  26. Riehl, B. D., Kim, E., Bouzid, T., Lim, J. Y. The role of microenvironmental cues and mechanical loading milieus in breast cancer cell progression and metastasis. Frontiers in Bioengineering and Biotechnology. 8, 608526 (2021).
check_url/65333?article_type=t

Play Video

Cite This Article
Holen, L. J., Onwudiwe, K., Najera, J., Zarodniuk, M., Obayemi, J. D., Soboyejo, W. O., Datta, M. Shear Assay Protocol for the Determination of Single-Cell Material Properties. J. Vis. Exp. (195), e65333, doi:10.3791/65333 (2023).

View Video