Summary

探索生活史选择:使用温度和基质类型作为吹蝇幼虫和雌性偏好的相互作用因素

Published: November 17, 2023
doi:

Summary

本文详细介绍了用于评估蝇幼虫和雌虫的食物来源和产卵偏好的两种方案。这些包括四个选择和两个相互作用因素:基板类型和温度。这些测定能够确定幼虫的食物来源偏好和雌性的产卵部位偏好。

Abstract

蝇类(双翅目:Calliphoridae)的幼虫生活方式多种多样,通常分为专性寄生、兼性寄生和完全腐尸食性。几种寄生物种,包括专性和兼性,被认为具有卫生和经济重要性,因为它们的幼虫可引起蝇蛆病(活组织中的蛆虫感染)。然而,值得注意的是,成年雌性在选择产卵部位时起着决定性的作用,因此在很大程度上决定了幼虫的摄食习性和发育条件。在这项研究中,提出了两种方案来测试幼虫摄食偏好和雌性产卵位点偏好,考虑了两个相互作用因素:肉基质类型和温度。这里介绍的设置允许在两种温度(33 ± 2 °C 和 25 ± 2 °C)和两种类型的肉基质(补充血液的新鲜肉和 5 天大的腐烂肉)的四选择测定中测试 露西莉亚 幼虫和妊娠雌性。幼虫或妊娠雌性可以分别选择在以下任一环境中挖洞或产卵:25°C的腐烂肉(模拟食尸物种条件),33°C补充血液的鲜肉(模拟寄生物种条件),以及两个对照,33°C的腐烂肉或25°C补充血液的鲜肉。 通过计算每个重复的每个选项中产下的幼虫或卵的数量来评估偏好。将观察到的结果与随机分布进行比较,可以估计偏好的统计显着性。结果表明,在25 °C下, 杆菌幼虫对腐烂基质有较强的偏好性。 相反,雌性对产卵部位的偏好在肉质类型中变化更大。这种方法可以用于测试其他类似大小的昆虫物种的偏好。其他问题也可以通过使用替代条件来探索。

Introduction

苍蝇,尤其是蝇类(包括蝇、家蝇、僵尸蝇和肉蝇等),表现出广泛的生活方式,包括寄生和坏死腐食行为1.寄生虫通常会引起蝇蛆病,即蛆虫(幼虫)对活组织的感染2。在蛆科中,专性寄生和兼性寄生物种都是主要的牲畜害虫,由于蛆虫侵扰,造成经济损失和动物福利差2,3,4,5,6,7。专性寄生虫,如新世界和旧世界的螺旋虫(分别为Cochliomyia hominivoraxChrysomyia bezziana),与兼性寄生虫(如羊蝇(Lucilia cuprina 和 Lucilia sericata))2,5,6,7.非寄生物种,包括腐生尸虫物种,在腐烂和坏死的有机物中发育,常见于不卫生的环境中。它们严格的非寄生生活方式可以成功地用于蛆虫治疗,该疗法使用苍蝇幼虫清洁坏死组织的伤口11,12,13。苍蝇也被用于法医学,因为它们是最早发现和定植于最近死亡尸体的生物之一,发育中的幼虫是估计死亡时间的一种手段14

由于蝇的生活方式与人类利益有关,它们已成为各种研究的主题(例如,15、16、1718192021)。了解控制物种生活方式的生物学机制可以为改进旨在控制害虫物种的方法提供有价值的见解。此外,吹蝇生活方式的多样性和进化为研究复杂性状(例如寄生)的起源和机制提供了理想的背景。由于蛆虫以活组织为食而导致的寄生在Calliphoridae家族中独立进化了几次22,23然而,苍蝇摄食习性的进化历史在很大程度上仍然未知,研究仅限于绘制系统发育的习性图谱(例如,16,19,22),而没有功能测定的帮助。例如,尚不确定专性寄生虫是从通才(即兼性寄生虫)进化而来的,还是直接从食尸动物进化而来的。伴随生活方式进化转变的分子、生理和行为过程也在很大程度上是未知的。

在这种情况下,兼性寄生虫,如绵羊吹蝇Lucilia cuprina,可以作为宿主的寄生虫或尸体上的尸检发育,为探索控制生活方式选择的因素和机制提供了可能性。露西莉亚·库普里纳(Lucilia cuprina)是一种世界性的物种,以引起绵羊苍蝇而闻名,尤其是在澳大利亚,它被认为是一种害虫3,16由李氏菌引起的蝇蛆病也可发生在其他牲畜、宠物和人类中 3,24,25,26,27,28,29,30。然而,它的幼虫也可以在坏死组织和腐烂物质中发育,该物种已成功用于法医昆虫学,因为它可以非常快速地定位和定植尸体31,32,33,34。虽然苍蝇的寄生与非寄生生活方式是由幼虫阶段决定的,但选择产卵部位的是成年雌性。因此,成年雌性严重影响了幼虫的生活方式,因为后者的活动能力有限。然而,雌性的选择并不一定意味着幼虫在选择35时会更喜欢相同的基质。一种假设是,导致雌性在活体组织上产卵的行为变化可能是早期转向寄生生活方式的一部分。由此产生的幼虫的预适应或生理能力对于它们在活组织上的成功发育至关重要,从而导致寄生生活方式的出现。因此,受影响和选择的过程不一定在两个生命阶段之间保持一致。

在这种情况下,开发了两种方法来测试蝇的行为偏好,特别是对于库普里纳乳杆菌,关于幼虫摄食基质(幼虫偏好测定)和产卵部位(雌性偏好测定)。这些方法考虑了两个相互作用因素:温度和肉类新鲜度。温度被选为关键因素,因为大多数蝇蛆病病例发生在恒温动物中 2.因此,选择33°C的温度作为“寄生生活方式因素”的代表,而25°C(室温)的温度代表“非寄生因素”。选择25°C的温度,因为它代表了巴西记录的年平均温度(国家气象研究所,INMET)。此外,还考虑了两种类型的肉基质,均来自牛:(i)补充血液的新鲜肉,模仿寄生生活方式的基质,用于在实验室条件下饲养寄生的吹蝇Co. hominivorax 36,以及(ii)5天大的腐烂肉,模拟食尸癖生活方式的基质。牛基质通常用于在实验室条件下饲养 L. cuprina 27、373839,因为它在可用性成本效益和实用性方面具有多项优势,同时是一种生态上合理的基质。其他研究40,41 比较了腐烂基质新鲜基质对苍蝇的影响,使用了 7 天龄的腐烂基质(在厌氧条件下),并显示腐烂基质对发育率、存活率和生长有不利影响。由于已知 L. cuprina 会在通常暴露在空气中的新鲜尸体上定植,因此我们决定在非密封罐(好氧和厌氧分解)中使用 5 天大的腐烂肉(碎牛肉)来模拟尸检基质。

这里介绍的实验设计具有辨别单个因素及其组合效应的偏好的优势。此外,评分的表型,即幼虫摄食基质的选择和产卵的数量,与蝇类物种的生物学和生态学方面直接相关。通过证明这些方案在 库普里纳乳杆菌中的有效性,突出了这些方案的适用性。此外,还提供了统计分析脚本,可用于将 库普里纳乳 杆菌的观测结果与模拟随机数据进行比较,确保可靠的统计分析和解释。

Protocol

苍蝇样本是使用陷阱而不是在受感染的动物身上获得的。颁发了SISBIO许可证(67867-1),用于在实验室条件下收集和饲养Calliphoridae家族的苍蝇。在巴西的研究中,昆虫样本免于伦理评估。牛肉和牛血是通过商业方式获得的,不需要道德许可。 1.幼虫摄食偏好 制备含有2%琼脂的培养皿用2%琼脂准备四个培养皿。为此,将 6 g 细菌琼脂加入 300 mL 水中,并?…

Representative Results

为了证明所提出方法的有效性,使用实验室种群Lucilia cuprina(科:Calliphoridae)进行实验,这是一种兼性寄生吹蝇2。该物种获得的整个原始数据集可以在补充文件 S3 中找到,其中包含幼虫和雌性基质偏好测试的结果。为了评估幼虫和雌虫是否表现出对任何底物的偏好,将观察到的数据与1000个模拟数据集进行比较,每个数据集代表一个随机选择(参见补?…

Discussion

了解摄食习性的演变,特别是在蝇的寄生背景下,需要检查不同生命阶段的基质偏好,以便摄食或产卵。因此,在这项研究中,提出了稳健而直接的方法来研究蝇幼虫和雌虫的基质偏好。这些方法在兼性寄生吹蝇 Lucilia cuprina 2 中进行了测试。有趣的是,这些实验揭示了 L. cuprina 幼虫在 25 °C 下对腐烂肉的明显倾向,这与食尸动物通常使用的条件一致。这与 Fouche 等?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们感谢 Patrícia J. Thyssen、Gabriela S. Zampim 和 Lucas de Almeida Carvalho 提供 L. cuprina 菌落并协助建立实验。我们还要感谢拉斐尔·巴罗斯·德·奥利维拉(Rafael Barros de Oliveira)拍摄和编辑视频。这项研究得到了动物行为学会对 V.A.S.C. 的发展中国家研究资助和对 T.T.T. (20/05636-4) 的 FAPESP Dimensions US-Biota-São Paulo 资助的支持。S.T. 和 D.L.F. 得到了 FAPESP 的支持(分别为 19/07285-7 博士后资助和 21/10022-8 博士奖学金)。V.A.S.C. 和 A.V.R. 获得了 CNPq 博士奖学金的支持(分别为 141391/2019-7、140056/2019-0)。T.T.T. 得到了 CNPq (310906/2022-9) 的支持。

Materials

Agar Sigma-Aldrich 05038-500G For microbiology
Black cardboards 70×50 cm
Bovine blood with anticoagulat  50% pure bovine blood with anticoagulant (3.8% sodium citrate) + 50% of filtered water
Bovine ground Meat Around 7-8% of fat
Brush Made with plastic
Conical tube Falcon or Generic 50 mL
Cross-shaped glass containers Handmade NA 48×48 cm, 8 cm of height and 8 cm of width
Erlenmeyer Vidrolabor NA 500 mL
70% Ethanol Synth A1084.01.BL 70% ethyl ethanol absolute + 30% filtered water
Graduated cylinder Nalgon or Generic 500 mL and 50 mL
Heating pad Thermolux 30×40 cm dimensions, 40 W, 127 V
Infrared thermometer HeTaiDa HTD8808 Non-contact body thermometer (Sample Rate: 0.5 S,
Accuracy: ±0.2 °C,
Measuring: 5-15 cm)
Petri dish (Glass) Precision NA 150×20 mm dimensions
             (Note: the petri dishes can be plastic if used only once)
Petri dish PS Cralplast 18130 60×15 mm dimensions
Plastic Pasteur pipette 3 mL (total volume)
Sodium citrate Synth C11033.01.AG 3.8% Sodium citrate (38 g diluted in 1L of filtered water)
Spoons More than one spoon is necessary. Use one for each type of meat substrate. Preferably stainless steel.
Stainless steel spatula Generic Flat end and spoon end
Stereomicroscope Bioptika WF10X/22 lenses
Tweezer Metal made and fine point
White led light strips NA NA 4.8 W, 2×0.05 mm², 320 lumens, Color temperature:6500 K (white)

References

  1. Kutty, S. N., et al. Phylogenomic analysis of Calyptratae: Resolving the phylogenetic relationships within a major radiation of Diptera. Cladistics. 35 (6), 605-622 (2019).
  2. Zumpt, F. . Myiasis in Man and Animals in the Old World. A textbook for physicians, veterinarians and zoologists. , (1965).
  3. Hall, M., Wall, R. Myiasis of humans and domestic animals. Advances in Parasitology. 35, 257-334 (1995).
  4. Grisi, L., et al. Reassessment of the potential economic impact of cattle parasites in Brazil. Revista Brasileira de Parasitologia Veterinária. 23 (2), 150-156 (2014).
  5. Sackett, D., Holmes, P., Abbot, K., Jephcott, S., Barber, M. Assessing the economic cost of endemic disease on the profitability of Australian beef cattle and sheep producers. Meat & Livestock Australian Report. AHW.087. Meat & Livestock Australian Report. , (2006).
  6. Heath, A. C. G., Bishop, D. M. Flystrike in New Zealand: An overview based on a 16-year study, following the introduction and dispersal of the Australian sheep blowfly, Lucilia cuprina Wiedemann (Diptera: Calliphoridae). Veterinary Parasitology. 137 (3-4), 333-344 (2006).
  7. Mullen, G. R., Durden, L. A. . Medical and veterinary entomology. , (2009).
  8. Spradbery, J. P. Screw-worm fly: A tale of two species. Agricultural Zoology Reviews. 6 (1), (1994).
  9. World Organization for Animal Health (OIE). New World screwworm (Cochliomyia hominivorax) and Old World screwworm (Chrysomya bezziana), Manual of diagnostic tests and vaccines for terrestrial animals. World Organization for Animal Health (OIE). , (2013).
  10. Wardhana, A. H., Abadi, I., Cameron, M. M., Ready, P. D., Hall, M. J. R. Epidemiology of traumatic myiasis due to Chrysomya bezziana in Indonesia. Jurnal Ilmu Ternak dan Veteriner. 23 (1), 45 (2018).
  11. Linger, R. J., et al. Towards next generation maggot debridement therapy: Transgenic Lucilia sericata larvae that produce and secrete a human growth factor. BMC Biotechnology. 16 (1), 30 (2016).
  12. Fonseca-Muñoz, A., Sarmiento-Jiménez, H. E., Pérez-Pacheco, R., Thyssen, P. J., Sherman, R. A. Clinical study of Maggot therapy for Fournier’s gangrene. International Wound Journal. 17 (6), 1551 (2020).
  13. Franciéle, S. M., Demetrius, S. M., Patricia, J. T. Larval Therapy and the application of larvae for healing: review and state of the art in Brazil and worldwide. Revista Thema. 12 (01), 4-14 (2015).
  14. Greenberg, B. Flies as forensic indicators. Journal of Medical Entomology. 28 (5), 565-577 (1991).
  15. Stevens, J. R., Wallman, J. F., Otranto, D., Wall, R., Pape, T. The evolution of myiasis in humans and other animals in the Old and New Worlds (Part II): Biological and life-history studies. Trends in Parasitology. 22 (4), 181-188 (2006).
  16. Stevens, J. R. The evolution of myiasis in blowflies (Calliphoridae). International Journal for Parasitology. 33 (10), 1105-1113 (2003).
  17. McDonagh, L. M., Stevens, J. R. The molecular systematics of blowflies and screwworm flies (Diptera: Calliphoridae) using 28S rRNA, COX1 and EF-1α Insights into the evolution of dipteran parasitism. Parasitology. 138 (13), 1760-1777 (2011).
  18. Wallman, J. F., Leys, R., Hogendoorn, K. Molecular systematics of Australian carrion-breeding blowflies (Diptera:Calliphoridae) based on mitochondrial DNA. Invertebrate Systematics. 19 (1), (2005).
  19. Yan, L., et al. Monophyletic blowflies revealed by phylogenomics. BMC Biology. 19 (1), 230 (2021).
  20. Cardoso, G. A., Deszo, M. S., Torres, T. T. Evolution of coding sequence and gene expression of blowflies and botflies with contrasting feeding habits. Genomics. 113 (1), 699-706 (2021).
  21. Cardoso, G. A., Marinho, M. A. T., Monfardini, R. D., Espin, A. M. L. D. A., Torres, T. T. Evolution of genes involved in feeding preference and metabolic processes in Calliphoridae (Diptera: Calyptratae). PeerJ. 4, 2598 (2016).
  22. Stevens, J. R., Wallman, J. F. The evolution of myiasis in humans and other animals in the Old and New Worlds (part I): Phylogenetic analyses. Trends in Parasitology. 22 (3), 129-136 (2006).
  23. Wiegmann, B. M., et al. Episodic radiations in the fly tree of life. Proceedings of the National Academy of Sciences. 108 (14), 5690-5695 (2011).
  24. Azevedo, W. T. D. A., et al. Record of the first cases of human myiasis by Lucilia cuprina (Diptera: Calliphoridae), Rio de Janeiro, Brazil. Journal of Medical Entomology. 52 (6), 1368-1373 (2015).
  25. Bishop, D., Patel, D., Heath, A. A New Zealand case of nasal myiasis involving Lucilia cuprina (Diptera: Calliphoridae). The New Zealand Medical Journal (Online). 131 (1484), 68-70 (2018).
  26. Lukin, L. G. Human cutaneous myiasis in Brisbane: a prospective study. Medical Journal of Australia. 150 (5), 237-240 (1989).
  27. Paulo, D. F., et al. Specific gene disruption in the major livestock pests Cochliomyia hominivorax and Lucilia cuprina Using CRISPR/Cas9. G3 Genes|Genomes|Genetics. 9 (9), 3045-3055 (2019).
  28. Puttalakshmamma, G. C., Dhanalakshmi, H., D’souza, P. E., Ananda, K. J. Incidence of myiasis in domestic animals in Bangalore. Intas Polivet. 6 (2), 353-356 (2005).
  29. Rao, M. A. N., Pillay, M. R. Some notes on cutaneous myiasis in animals in the Madras presidency. Indian Journal of Veterinary Science. 6 (3), (1936).
  30. Soundararajan, C. Traumatic myiasis in an Indian peafowl (Pavo cristatus) due to Lucilia cuprina first report. Journal of Veterinary Parasitology. 34 (1), 49-51 (2020).
  31. Smith, K. G. V. . A manual of forensic entomology. , (1986).
  32. Goff, M. L. . A Fly for the Prosecution. , (2001).
  33. CRC Press. . Forensic entomology: the utility of arthropods in legal investigations. , (2001).
  34. Greenberg, B., Kunich, J. C. . Entomology and the law: flies as forensic indicators. , (2002).
  35. Ellis, A. M. Incorporating density dependence into the oviposition preference-offspring performance hypothesis. Journal of Animal Ecology. 77 (2), 247-256 (2008).
  36. Vargas, M. E. I., Azeredo-Espin, A. M. L. Genetic variability in mitochondrial DNA of the screwworm, Cochliomyia hominivorax (Diptera: Calliphoridae), from Brazil. Biochem Genet. 33, 237-256 (1995).
  37. Bambaradeniya, Y. T. B., Karunaratne, W. I. P., Tomberlin, J. K., Goonerathne, I., Kotakadeniya, R. B. Temperature and tissue type impact development of Lucilia cuprina (Diptera: Calliphoridae) in Sri Lanka. Journal of Medical Entomology. 55 (2), 285-291 (2018).
  38. Chaaban, A., et al. Insecticide activity of Curcuma longa (leaves) essential oil and its major compound α-phellandrene against Lucilia cuprina larvae (Diptera: Calliphoridae): Histological and ultrastructural biomarkers assessment. Pesticide Biochemistry and Physiology. 153, 17-27 (2019).
  39. Selem, G., Geden, C. J., Khater, H., Khater, K. S. Effects of larval diets on some biological parameters and morphometric and biochemical analysis of ovaries of Lucilia cuprina (Wiedemann) (Diptera: Calliphoridae). Journal of Vector Ecology. 48 (2), (2023).
  40. Fouche, Q., Hedouin, V., Charabidze, D. Effect of density and species preferences on collective choices: an experimental study on maggot aggregation behaviours. Journal of Experimental Biology. 224 (6), 233791 (2021).
  41. Richards, C. S., Rowlinson, C. C., Cuttiford, L., Grimsley, R., Hall, M. J. R. Decomposed liver has a significantly adverse affect on the development rate of the blowfly Calliphora vicina. International Journal of Legal Medicine. 127, (2013).
  42. Boulay, J., Deneubourg, J. -. L., Hédouin, V., Charabidzé, D. Interspecific shared collective decision-making in two forensically important species. Proceedings of the Royal Society B: Biological Sciences. 283 (1824), 20152676 (2016).
  43. Joseph, R. M., Devineni, A. V., King, I. F. G., Heberlein, U. Oviposition preference for and positional avoidance of acetic acid provide a model for competing behavioral drives in Drosophila. Proceedings of the National Academy of Sciences. 106 (27), 11352-11357 (2009).
  44. Mierzejewski, M. K., Horn, C. J., Luong, L. T. Ecology of fear: Environment-dependent parasite avoidance among ovipositing Drosophila. Parasitology. 146 (12), 1564-1570 (2019).
  45. Stensmyr, M. C., et al. A conserved dedicated olfactory circuit for detecting harmful microbes in drosophila. Cell. 151 (6), 1345-1357 (2012).
  46. Yang, S. -. T., Shiao, S. -. F. Oviposition preferences of two forensically important blow fly species, chrysomya megacephala and C. rufifacies (Diptera: Calliphoridae), and implications for postmortem interval estimation. Journal of Medical Entomology. 49 (2), 424-435 (2012).
  47. Brodie, B. S., Wong, W. H. L., VanLaerhoven, S., Gries, G. Is aggregated oviposition by the blow flies Lucilia sericata and Phormia regina (Diptera: Calliphoridae) really pheromone-mediated?: Pheromone-mediated Lucilia sericata and Phormia regina flies. Insect Science. 22 (5), 651-660 (2015).
  48. Horn, C. J., Liang, C., Luong, L. T. Parasite preferences for large host body size can drive overdispersion in a fly-mite association. International Journal for Parasitology. , (2023).
  49. Liu, W., et al. Enterococci mediate the oviposition preference of Drosophila melanogaster through sucrose catabolism. Scientific Reports. 7 (1), 13420 (2017).
  50. Parodi, A., et al. Black soldier fly larvae show a stronger preference for manure than for a mass-rearing diet. Journal of Applied Entomology. 144 (7), 560-565 (2020).
check_url/65835?article_type=t

Play Video

Cite This Article
Cunha, V. A. S., Tandonnet, S., Ferreira, D. L., Rodrigues, A. V., Torres, T. T. Exploring Life History Choices: Using Temperature and Substrate Type as Interacting Factors for Blowfly Larval and Female Preferences. J. Vis. Exp. (201), e65835, doi:10.3791/65835 (2023).

View Video