Summary

条纹分析来研究蛋白质底物使用游离海马神经元的吸引力或令人反感的活动

Published: June 19, 2016
doi:

Summary

Axon guidance molecules regulate neuronal migration and targeted growth-cone navigation. We present a powerful method, the stripe assay, to assess the ability of guidance molecules to attract or repulse neurons. In this protocol, we demonstrate the stripe assay by showing FLRT2’s ability to repel cultured hippocampal neurons.

Abstract

Growing axons develop a highly motile structure at their tip, termed the growth cone. The growth cone contacts extracellular environmental cues to navigate axonal growth. Netrin, slit, semaphorin, and ephrins are known guidance molecules that can attract or repel axons upon binding to receptors and co-receptors on the axon. The activated receptors initiate various signaling molecules in the growth cone that alter the structure and movement of the neuron. Here, we describe the detailed protocol for a stripe assay to assess the ability of a guidance molecule to attract or repel neurons. In this method, dissociated hippocampal neurons from E15.5 mice are cultured on laminin-coated dishes processed with alternating stripes of ectodomain of fibronectin and leucine-rich transmembrane protein-2 (FLRT2) and control immunoglobulin G (IgG) fragment crystallizable region (Fc) protein. Both axons and cell bodies were strongly repelled from the FLRT2-coated stripe regions after 24 h of culture. Immunostaining with tau1 showed that ~90% of the neurons were distributed on the Fc-coated stripes compared to the FLRT2-Fc-coated stripes (~10%). This result indicates that FLRT2 has a strong repulsive effect on these neurons. This powerful method is applicable not only for primary cultured neurons but also for a variety of other cells, such as neuroblasts.

Introduction

轴突导向是由新形成的神经元的神经系统1,2开发过程中发出轴突到其目标的过程。显影轴突在其前端称为生长锥携带一个高度能动结构。生长锥检测外线索导航轴突的路径。导向分子,如狭缝,脑信号蛋白,肝配蛋白和,可以吸引或取决于它们与轴突1,3,4合适受体和共同受体相互作用击退轴突。该激活受体信号传送到影响其轴突和生长锥的运动细胞骨架组织生长锥。

各种方法已被开发来评估诱和驱避剂分子的作用。化疗诱和驱虫剂可施用与梯度浓度的生长/培养基( 例如 ,唐恩的腔室或μ幻灯片)由微-对5,6,在一个高度集中点ipette( 例如 ,车削试验)7,或通过浴应用程序( 例如 ,生长锥塌陷测定法)8,9均匀浓度。

其它方法包括条纹测定或微接触印刷(μCP),其中一个化学引诱或斥涂覆的板的表面上作为底物10-12。 Thestripe法最初是由朋霍费尔和他的同事开发了在1987年以分析小鸡眼膜-顶盖系统13地形测绘。原始方法需要真空系统的外壳蛋白上使用的条纹和啮合矩阵聚碳酸酯核孔膜。在以后的版本中,重组蛋白用窄缝硅矩阵14,15直接印刷的培养板的表面上在一个条纹图案。近日,各研究小组已成功地应用这个条纹检测到轴突导向分子的活动16-21分析。

<p class ="“jove_content”">在这里,我们提出详细的协议为措施分离的海马神经元轴突导向分子的吸引或排斥的条纹检测。值得注意的是,这种方法可以在最低限度地配备实验室设置被应用。对于该测定,是在使用硅基质的塑料培养皿具有90微米缝隙产生并涂覆有层粘连蛋白的荧光标记的底物和对照蛋白的交替条纹。在我们的示范,解离从E15.5小鼠海马神经元分别在交替纤连蛋白和跨膜蛋白2(FLRT2)富含亮氨酸和控制Fc蛋白21的重组胞外结构域的条纹进行培养。培养24小时后,无论是轴突和神经元的细胞体强烈从FLRT2条纹排斥。用抗TAU1抗体染色揭示〜神经元的90%被分布在与Fc包被的区域,相比于上FLRT2-Fc的〜10%,这表明FLRT2具有很强的推斥力功能海马神经元21。

Protocol

涉及动物主题程序已在滨松医科大学获批准的机构动物护理和使用委员会。 1.矩阵的制备煮沸4-8硅氧烷基质在微波或热板上5分钟,使它们能够完全干燥下层流(条纹面朝上)1小时。 注意:下面的程序应在层流下进行。 吹压缩空气或用透明胶带从矩阵的条纹侧上的灰尘。保持条纹侧干净,因此可以牢固地附着在板面。 小心用手指(;条纹面朝下每皿矩阵)按压放置?…

Representative Results

从E15.5小鼠分离的海马神经元接种并培养24 h上的条纹的荧光标记控制的Fc( 图3A-C)或FLRT2-Fc的( 图3D-F),与非标记的对照Fc的交替。在这两种情况下,神经元聚集和扩展它们的轴突束为。在控制的Fc / Fc的条纹,神经元均匀地分布在荧光标记和非标记的条纹,它们扩展它们的轴突在随机的方向( 图3A-C)。与此相反,在FLRT-2FC / Fc的条?…

Discussion

这个协议描述了使用重组蛋白质和分离的神经元从E15.5小鼠海马的条纹检测。该测定允许神经元的排斥力,吸引力,或中性反应于感兴趣的重组蛋白放置在条纹图案的有效观察。该协议的主要优点是用于产生条纹,其中蛋白质被直接印刷到塑料盘的表面上的简单的方法,相对于传统的方法,该方法需要特殊的基质,真空系统,和一个核孔膜20 21。为了使蛋白条带,标记的重组蛋白可通过一?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was supported by Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (23700412, 25122707 and 26670090 to S.Y.).

Materials

15 mL centrifuge tube Violamo  1-3500-01
4% Paraformaldehyde (PFA) Nacalai 01954-85
Alexa Fluor 488 Goat anti-human IgG antibody Thermo Scientific A11013
Alexa Fluor 594 Donkey anti-mouse IgG antibody Thermo Scientific A-21203 Dilution 1/500
Anti-Tau1 antibody Chemicon MAB3420 Dilution 1/200
Antifade Thermo Scientific P7481 Alternative mounting media may be used
B27 supplement Thermo Scientific 17504-044 Dilution 1/50
Bovine serum albumin Sigma 01-2030-2
Cell strainer 100 um BD Falcon 352360
Centrifugation machine Kubota 2410
Cover glass 18mmx18mm Matsunami 18×18 mm No. 1
DAKO pen DAKO S2002 Alternative water-repellent pen may be used
Disposable scalpel Feather 2975#11
FBS Thermo Scientific 10437-028
Fluorecent microscope Nikon E600
Forceps No. 5 Fine Science Tools 11254-20
GlutaMAX Thermo Scientific 35050-061 Dilution 1/200
Hamilton Syringe Hamilton 805N 22 gauge, 50 uL
HBSS Thermo Scientific 14170-112
Human IgG, Fc Fragment Jackson 009-000-008
Laminin Thermo Scientific 23017-015
Neurobasal Thermo Scientific 21103-049
Normal Donkey Serum Jackson 017-000-121
PBS Nacalai 14249-24
Penicillin-Streptomycin Thermo Scientific 15070-063 Dilution 1/100
Plastic culture dish, 60 mm Thermo Scientific 150288
Silicone Matrices Available and purchasable from Prof. Martin Bastmeyer (bastmeyer@kit.edu)
Stereo Microscope Olympus SZ61
Tip, 1000 uL Watson 125-1000S
Transparent sticky tape Tesa 57315 Alternative sticky tape may be used
Triton X-100 Sigma T8787
Trypan blue, 0.4% Bio-Rad 145-0013
Trypsin/EDTA Thermo Scientific 25300-054
Culture medium Neurobasal supplemented with B27, GlutaMAX and Penicillin-Streptomycin.

References

  1. Dickson, B. J. Molecular mechanisms of axon guidance. Science. 298 (5600), 1959-1964 (2002).
  2. Bashaw, G. J., Klein, R. Signaling from axon guidance receptors. Cold Spring Harb Perspect Biol. 2 (5), 001941 (2010).
  3. Hong, K., Nishiyama, M., Henley, J., Tessier-Lavigne, M., Poo, M. Calcium signalling in the guidance of nerve growth by netrin-1. Nature. 403 (6765), 93-98 (2000).
  4. Ming, G. -. l., Henley, J., Tessier-Lavigne, M., Song, H. -. j., Poo, M. -. m. Electrical Activity Modulates Growth Cone Guidance by Diffusible Factors. Neuron. 29 (2), 441-452 (2001).
  5. Dudanova, I., et al. Genetic evidence for a contribution of EphA:ephrinA reverse signaling to motor axon guidance. J Neurosci. 32 (15), 5209-5215 (2012).
  6. Ye, B. Q., Geng, Z. H., Ma, L., Geng, J. G. Slit2 regulates attractive eosinophil and repulsive neutrophil chemotaxis through differential srGAP1 expression during lung inflammation. J Immunol. 185 (10), 6294-6305 (2010).
  7. Ly, A., et al. DSCAM is a netrin receptor that collaborates with DCC in mediating turning responses to netrin-1. Cell. 133 (7), 1241-1254 (2008).
  8. Hata, K., Kaibuchi, K., Inagaki, S., Yamashita, T. Unc5B associates with LARG to mediate the action of repulsive guidance molecule. J Cell Biol. 184 (5), 737-750 (2009).
  9. Egea, J., et al. Regulation of EphA 4 kinase activity is required for a subset of axon guidance decisions suggesting a key role for receptor clustering in Eph function. Neuron. 47 (4), 515-528 (2005).
  10. von Philipsborn, A. C., Lang, S., Jiang, Z., Bonhoeffer, F., Bastmeyer, M. Substrate-Bound Protein Gradients for Cell Culture Fabricated by Microfluidic Networks and Microcontact Printing. Sci Signal. , (2007).
  11. Jackman, R., Wilbur, J., Whitesides, G. Fabrication of submicrometer features on curved substrates by microcontact printing. Science. 269 (5224), 664-666 (1995).
  12. Mrksich, M., Whitesides, G. M. Using self-assembled monolayers to understand the interactions of man-made surfaces with proteins and cells. Annu Rev Biophys Biomol Struct. 25, 55-78 (1996).
  13. Walter, J., Kern-Veits, B., Huf, J., Stolze, B., Bonhoeffer, F. Recognition of position-specific properties of tectai cell membranes by retinal axons in vitro. Development. 101, 685-696 (1987).
  14. Knoll, B., Weinl, C., Nordheim, A., Bonhoeffer, F. Stripe assay to examine axonal guidance and cell migration. Nat Protoc. 2 (5), 1216-1224 (2007).
  15. Weschenfelder, M., Weth, F., Knoll, B., Bastmeyer, M. The stripe assay: studying growth preference and axon guidance on binary choice substrates in vitro. Methods Mol Biol. 1018, 229-246 (2013).
  16. Seiradake, E., et al. Structure and functional relevance of the Slit2 homodimerization domain. EMBO Rep. 10 (7), 736-741 (2009).
  17. Gebhardt, C., Bastmeyer, M., Weth, F. Balancing of ephrin/Eph forward and reverse signaling as the driving force of adaptive topographic mapping. Development. 139 (2), 335-345 (2012).
  18. Atapattu, L., et al. Antibodies binding the ADAM10 substrate recognition domain inhibit Eph function. J Cell Sci. 125, 6084-6093 (2012).
  19. Stark, D. A., Karvas, R. M., Siegel, A. L., Cornelison, D. D. Eph/ephrin interactions modulate muscle satellite cell motility and patterning. Development. 138 (24), 5279-5289 (2011).
  20. Seiradake, E., et al. FLRT Structure: Balancing Repulsion and Cell Adhesion in Cortical and Vascular Development. Neuron. 84 (2), 370-385 (2014).
  21. Yamagishi, S., et al. FLRT2 and FLRT3 act as repulsive guidance cues for Unc5-positive neurons. EMBO J. 30 (14), 2920-2933 (2011).
check_url/cn/54096?article_type=t

Play Video

Cite This Article
Yamagishi, S., Kesavamoorthy, G., Bastmeyer, M., Sato, K. Stripe Assay to Study the Attractive or Repulsive Activity of a Protein Substrate Using Dissociated Hippocampal Neurons. J. Vis. Exp. (112), e54096, doi:10.3791/54096 (2016).

View Video