Summary

去除<em>果蝇</em从幼虫鱼片的感官神经元和表皮细胞的免疫荧光分析>肌肉组织

Published: November 02, 2016
doi:

Summary

使用的果蝇幼虫树突分支(DA)神经元的神经元形态的研究通过免疫荧光神经细胞和表皮蛋白质的原位可视化中受益。我们描述通过从幼虫体壁除去肌肉组织提高多巴胺神经元和包围的表皮细胞的免疫荧光分析的过程。

Abstract

的果蝇幼虫树突分支(DA)神经元是研究神经元形态发生机制流行模式。 DA能神经元发展与表皮细胞它们所支配,因而免疫荧光两种neuronally和epidermally表达蛋白的原位可视化他们的分析好处沟通。制备用于免疫荧光实验幼虫鱼片的传统方法留下完好的肌肉组织,覆盖大部分的体壁,呈现几个挑战于成像神经元和表皮蛋白质。在这里,我们描述了从的果蝇幼虫鱼片去除肌肉组织的方法。该协议可允许否则由肌肉组织遮蔽蛋白成像,改进了信噪比,并方便了使用超分辨率显微镜来研究哒神经发育。

Introduction

果蝇幼虫树突分支(DA)神经元由于其顺从遗传操纵和与它们可以被成像的容易程度为研究神经元发育一个有价值的模型。这些感觉神经元已经在控制树枝状结晶形态1-3众多途径的鉴定工具。

四类DA能神经元(类别I – IV)支配幼虫表皮。这些神经元位于基底膜和表皮之间,与他们的树突形成基本上二维阵列4,5。四个班,IV级DA能神经元具有最高度支乔木,像其他动物的感觉神经元,这些乔木的制定需要从邻近组织的内在因素,以及线索,尤其是表皮,为他们的发展6-9

研究确定怎么这样神经元和额外的神经元的事实ORS通过免疫荧光检测原位蛋白表达的能力控制树突形态效益。幼虫的外表皮是穿不透的抗体,但这个障碍是很容易通过行之有效的夹层方法-10,11-制备幼虫鱼片克服。然而,正好位于内部到基底膜体壁肌肉组织呈现朝大神经元和表皮细胞可视若干挑战。首先,肌肉组织,这行最体壁,大大掩盖从神经元或表皮组织发出的荧光信号。这大大降低了信号与样品中的信噪比。第二,许多相关的蛋白质可以在肌肉组织中,以及在神经元或表皮来表示。此肌肉衍生的荧光信号可能从神经元或表皮荧光信号的进一步晦涩检测。最后,先进的显微技术不在亚衍射分辨率样品W的许可证成像并可能挑剔了在神经元中表达的蛋白质的定位和周围的表皮细胞12,13尤其有用。然而,通过从强信噪比和样品到盖玻片接近超高分辨率显微镜好处成像。除了降低信噪比,幼虫体壁肌肉的距离从盖玻片,从而限制可与超分辨率显微镜方法来实现改进的图像分辨率达的神经元。除了为免疫荧光分析挑战,肌肉组织提出从感觉神经元在幼虫体壁的障碍,电生理记录。因此,它有利于去除感觉神经元14的神经生理学操纵。

此处被描述为手动去除果蝇幼虫的肌肉组织的方法。我们证明了我们的协议p蛋白质ermits免疫荧光成像被另有肌肉组织遮蔽,提高了信号到第IV类多巴胺神经元的可视噪声比,并允许使用超分辨率显微镜,以更好地辨别在多巴胺神经元的蛋白质和细胞结构的空间关系和表皮。

Protocol

注意:对于肌肉切除( 图1)的步骤的制备幼虫鱼片先前描述的方法的变形例。之前和之后的肌肉除去步骤概述简要地并且读者可以参考以前的工作10,11,用于更详细的描述。 1.解剖幼虫在冷盐水准备冷HL3.1生理盐水15或冷的Ca 2+ HL3.1生理盐水11( 表1)的工作稀释。放置幼虫与刚好足够冷盐水硅氧烷弹性体盘,…

Representative Results

我们证明肌肉切除过程的效用改善信噪比在免疫荧光实验共同形象化隔连接蛋白小艇(科拉)和光盘大型(DLG)用标记与膜标记IV级多巴胺神经元一起CD4- tdTomato。 科拉先前已用于识别阿凡达的神经元树突是由表皮细胞封闭,是已在研究协会DA神经元的形态和功能的树突4,6-9,16许多鉴定表皮因素之一大片。用抗DsRed的免疫染色,以检测神经元(红…

Discussion

在这里,一个协议是从的果蝇幼虫鱼片手工清除肌肉组织的描述。该协议会修改先前描述的幼虫解剖技术10,11。幼虫是在有机硅弹性体解剖的菜后,背中线的位置。一个单一的镊子尖头在其尽可能平坦的方向,仔细插入肌肉组织和表皮之间,靠近背中线。镊子轻轻向上从一个锚点中的每个感兴趣的幼虫段被拉至单独的肌肉组织。然后幼虫鱼片被固定在冷甲醛之后钳子再次用于从剩余…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们感谢加里Laevsky对显微镜有益的讨论。这项工作是由美国国立卫生研究院资助的授予R01GM061107和R01GM067758到ERG

Materials

Dumont #5 tweezers Electron Microscopy Sciences 72701-D
Micro Scissors, 8 cm, straight, 5 mm blades, 0.1 mm tips World Precision Instruments 14003
Sylgard 184 silicone elastomer kit Dow Corning 3097358-1004 for dissecting plates
Austerlitz insect pins, 0.1 mm Fine Science Tools 26002-10
Fostec 8375 light source Artisan Technology Group 62792-4
Zeiss Stemi 2000 Carl Zeiss Microscopy
Vectashield antifade mounting medium Vector Laboratories H-1000 for confocal microscopy
Prolong Diamond antifade mountant Life Technologies P36970 for structured illumination microscopy
Micro cover glass, 22×22 mm, No. 1.5 VWR 48366-227
Superfrost Plus microscope slides, 25 x 75 x 1.0 mm Fisherbrand 12-550-15
Mouse anti-Coracle antibody Developmental Studies Hybridoma Bank C615.16 supernatant, dilute 1:50
Mouse anti-Discs large antibody Developmental Studies Hybridoma Bank 4F3 supernatant, dilute 1:50
Rabbit anti-dsRed antibody Clontech 632496 dilute 1:1000
Goat anti-rabbit antibody, Alexa Fluor 568 conjugated ThermoFisher Scientific A-11011 dilute 1:1000
Goat anti-mouse antibody, Alexa Fluor 488 conjugated ThermoFisher Scientific A-11001 dilute 1:500

References

  1. Jan, Y. N., Jan, L. Y. Branching out: mechanisms of dendritic arborization. Nat Rev Neurosci. 11 (5), 316-328 (2010).
  2. Corty, M. M., Matthews, B. J., Grueber, W. B. Molecules and mechanisms of dendrite development in Drosophila. Development. 136 (7), 1049-1061 (2009).
  3. Parrish, J. Z., Emoto, K., Kim, M. D., Jan, Y. N. Mechanisms that regulate establishment, maintenance, and remodeling of dendritic fields. Annu Rev Neurosci. 30, 399-423 (2007).
  4. Kim, M. E., Shrestha, B. R., Blazeski, R., Mason, C. A., Grueber, W. B. Integrins establish dendrite-substrate relationships that promote dendritic self-avoidance and patterning in Drosophila sensory neurons. Neuron. 73 (1), 79-91 (2012).
  5. Han, C., et al. Integrins regulate repulsion-mediated dendritic patterning of Drosophila sensory neurons by restricting dendrites in a 2D space. Neuron. 73 (1), 64-78 (2012).
  6. Parrish, J. Z., Xu, P., Kim, C. C., Jan, L. Y., Jan, Y. N. The microRNA bantam functions in epithelial cells to regulate scaling growth of dendrite arbors in Drosophila sensory neurons. Neuron. 63 (6), 788-802 (2009).
  7. Jiang, N., Soba, P., Parker, E., Kim, C. C., Parrish, J. Z. The microRNA bantam regulates a developmental transition in epithelial cells that restricts sensory dendrite growth. Development. 141 (13), 2657-2668 (2014).
  8. Meltzer, S., et al. Epidermis-derived Semaphorin promotes dendrite self-avoidance by regulating dendrite-substrate adhesion in Drosophila sensory neurons. Neuron. 89 (4), 741-755 (2016).
  9. Han, C., et al. Epidermal cells are the primary phagocytes in the fragmentation and clearance of degenerating dendrites in Drosophila. Neuron. 81 (3), 544-560 (2014).
  10. Brent, J. R., Werner, K. M., McCabe, B. D. Drosophila larval NMJ dissection. J Vis Exp. (24), (2009).
  11. Karim, M. R., Moore, A. W. Morphological analysis of Drosophila larval peripheral sensory neuron dendrites and axons using genetic mosaics. J Vis Exp. (57), e3111 (2011).
  12. Gustafsson, J. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microscopy. 198 (2), 82-87 (2000).
  13. Ashdown, G. W., Cope, A., Wiseman, P. W., Owen, D. M. Molecular flow quantified beyond the diffraction limit by spatiotemporal image correlation of structured illumination microscopy data. Biophys J. 107 (9), L21-L23 (2014).
  14. Zhang, W., Yan, Z., Jan, L. Y., Jan, Y. N. Sound response mediated by the TRP channels NOMPC, NANCHUNG, and INACTIVE in chordotonal organs of Drosophila larvae. PNAS. 10 (33), 13612-13617 (2013).
  15. Feng, Y., Ueda, A., Wu, C. F. A modified minimal hemolymph-like solution, HL3.1, for physiological recordings at the neuromuscular junctions of normal and mutant Drosophila larvae. J Neurogenet. 18 (2), 377-402 (2004).
  16. Babcock, D. T., Landry, C., Galko, M. J. Cytokine signaling mediates UV-induced nociceptive sensitization in Drosophila larvae. Curr Biol. 19 (10), 799-806 (2009).
check_url/cn/54670?article_type=t

Play Video

Cite This Article
Tenenbaum, C. M., Gavis, E. R. Removal of Drosophila Muscle Tissue from Larval Fillets for Immunofluorescence Analysis of Sensory Neurons and Epidermal Cells. J. Vis. Exp. (117), e54670, doi:10.3791/54670 (2016).

View Video