Summary

高通量识别对伪单鱼的电阻syringae pv。番茄中的番茄使用苗子洪水测定

Published: March 10, 2020
doi:

Summary

幼苗洪水测定有助于快速筛选野生番茄加入,以抵抗伪莫纳斯西林加细菌。这种测定与幼苗细菌生长测定结合使用,有助于进一步描述细菌的潜在抗药性,并可用于筛选种群图以确定抗药性的遗传基础。

Abstract

番茄是一种农学上重要的作物,可以感染伪莫纳斯西林加,一种革兰氏阴性细菌,导致细菌斑点病。番茄-P. 西林格pv。番茄病系广泛用于解剖植物先天反应和抗病的遗传基础。几十年来,通过将从索拉伦皮皮内利菌引入培养番茄的Pto/Prf基因簇成功地管理疾病,而P.syringae的种族1菌株已经进化,以克服托/普夫基因簇赋予的阻力,并在全世界发生。

野生番茄品种是病原体识别中自然多样性的重要蓄水池,因为它们在不同环境、不同病原体压力下进化。在野生番茄抗病的典型屏幕中,使用成年植物,这可以限制植物的数量,这些植物可以筛选,因为它们的生长时间延长,生长空间要求更大。我们开发了一种筛选10天大番茄幼苗的抗性方法,将植物生长时间和生长室空间降至最低,使植物快速周转,并允许测试大样本尺寸。生存或死亡的幼苗结果可视为离散表型或受洪水后存活幼苗新生长量定义的阻力尺度。该方法经过优化,筛选了10天大的番茄幼苗,以抵抗两个P.syringae菌株,并可轻松适应其他P.syringae菌株。

Introduction

伪莫纳斯西林加是一种葛兰阴性致病菌,可感染多种植物宿主。细菌通过气孔或物理伤口进入宿主植物,并在凋亡1中增殖。植物已经进化出一种双层免疫反应,以防止细菌病原体感染。第一级发生在植物细胞表面,植物细胞膜上的模式识别受体在称为PAMP触发免疫(PTI)2的过程中感知高度保守的病原体相关分子模式(PAMPs)。在这个过程中,宿主植物加强防御反应途径,包括将钙质沉积到细胞壁上,关闭气孔,生产活性氧物种,以及诱导发病机制相关基因。

细菌可以通过利用III型分泌系统将蛋白质(称为效应器)直接输送到植物细胞3中,从而克服PTI。效应蛋白通常针对PTI的成分和促进病原体毒性4。第二层植物免疫在识别效应蛋白后发生在植物细胞内。这种识别依赖于抗药性基因,这些基因编码核苷酸结合位点富含白氨酸的重复含有受体(NLRs)。NLR 能够直接识别效应者或识别其在毒力目标或诱饵5上的活动。然后,它们触发一种称为效应器触发免疫(ETI)的过程的继发免疫反应,该反应通常与超敏反应(HR)相关,这是感染6地点的局部细胞死亡形式。与ETI相关的基因对基因电阻不同,植物可以表现出定量的局部阻力,这依赖于多个基因7的贡献。

P. 西林格加pv.番茄番茄上细菌斑点的因果剂,是一个长期的农业问题.场上的主要菌株通常是Pst比赛0菌株,表示或两种III型效应器AvrPto和AvrPtoB。DC3000(PstDC3000) 是一种具有代表性的种族 0 菌株和一种模型病原体,可引起番茄中的细菌斑点。为了对抗细菌斑点病,育种者将Pto [P. syringae pv. 番茄]/Prf =Pto电阻和芬西翁敏感性] 基因簇从野生番茄物种索兰皮皮内利菌进入现代品种8,9.基因编码的丝氨酸-threonine蛋白激酶,与Prf NLR一起,通过识别效应器AvrPto和AvrPtoB10,11,12,13,14,赋予对PstDC3000的电阻。然而,这种抵抗对新出现的比赛1株是无效的,允许他们快速和侵略性蔓延,近年来15,16。比赛1菌株逃避Pto/Prf集群的识别,因为AvrPto在这些菌株中丢失或突变,而AvrPtoB似乎累积最少15,17,18。

野生番茄种群是Pst抗药性自然变化的重要储藏库,以前曾用于识别潜在的抗性位点19、20、21。然而,目前用于病原体耐药性的屏幕使用4-5周大的成年植物20,21。因此,它们受生长时间、生长室空间和相对较小的样品尺寸的限制。为了解决传统方法的局限性,我们利用10天大的番茄苗22开发了高通量番茄P.syringae抗性测定。与使用成人工厂(即缩短生长时间、减少空间要求和提高吞吐量)比较,此方法具有几个优点。此外,我们已经证明,这种方法忠实地概括了在成年植物22中观察到的抗病现象。

在该协议中描述的幼苗洪水测定中,番茄幼苗生长在无菌的Murashige和Skoog(MS)介质的培养皿上,为期10天,然后被含有感兴趣的细菌和表面活性剂的细菌淹没。洪水过后,可以通过细菌生长测定定量评估幼苗的抗病能力。此外,幼苗的生存或死亡可以作为离散的抵抗或疾病表型7-14天后洪水。这种方法提供了一个高通量的替代方案,用于筛选大量的野生番茄加入,以抵抗Pst种族1菌株,如Pst菌株T1(PstT1),并可以很容易地适应其他细菌菌株的兴趣。

Protocol

1. 生物安全柜的制备和使用 用70%乙醇擦拭生物安全柜。 关闭窗框,打开生物安全柜中的紫外线 15 分钟。 15分钟后,关闭生物安全柜中的紫外线。提起窗框并打开鼓风机 15 分钟。 在将物品放入消毒柜之前,用 70% 乙醇擦拭生物安全柜中使用的所有物品。 在生物安全柜中工作之前,用 70% 乙醇清洁手套或徒手。 在生物安全柜的中心工作,远离鼓风机。</…

Representative Results

利用幼苗电阻测定检测培养物和等源系中的PtoR-介导免疫图 5显示了货币制造商-PtoR和货币制造商 -PtoS品种在PstDC3000 泛滥 7-10 天后的代表性结果。在感染之前,10天大的幼苗完全出现并扩大,并出现第一个真正的叶子。幼苗在光学密度为0.005~ 0.015%的表面活性剂中,以负控制(未显示数据)和PstDC3000被淹没。幼苗在洪水?…

Discussion

介绍了一种使用PstDC3000或PstT1优化的洪水接种方案,以检测番茄幼苗中对这些细菌菌株的抗药性。在幼苗阻力测定中,有几个关键参数,包括细菌浓度和表面活性剂浓度,这是经验确定22。对于PstDC3000,光学密度进行了优化,在含有Pto/Prf簇的耐药品种上实现完全存活,并在缺乏Pto/Prf群集22的易感品种上完全死亡。对于PstT1…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们感谢杰米·卡尔玛测试媒体量对疾病或耐药性结果的影响。我们感谢刘易斯实验室的Maöl Baudin博士和卡尔·谢伯博士对手稿提出建设性意见和建议。Lewis实验室植物免疫研究得到了美国农业部ARS 2030-21000-046-00D和2030-21000-050-00D(JDL)和NSF生物科学局IOS-1557661(JDL)的支持。

Materials

3M Tape Micropore 1/2" x 10 YD CS 240 (1.25 cm x 9.1 m) VWR International 56222-182
3mm borosilicate glass beads Friedrich & Dimmock GB3000B
Bacto peptone BD 211677
Bacto agar BD 214010
Biophotometer Plus Eppendorf E952000006
Biosafety cabinet, class II type A2
BRAND Disposable Plastic Cuvettes, Polystyrene VWR International 47744-642
Chenille Kraft Flat Wood Toothpicks VWR International 500029-808
cycloheximide Research Products International C81040-5.0
Dibasic potassium phosphate anhydrous, ACS grade Fisher Scientific P288-500
Dimethylformamide
Dissecting microscope (Magnification of at least 10x)
Ethanol – 190 Proof
Falcon polystyrene 96 well microplates, flat-bottom Fisher Scientific 08-772-3
Glass Alcohol Burner Wick Fisher Scientific S41898A / No. W-125
Glass Alcohol Burners Fisher Scientific S41898 / No. BO125
Glycerol ACS reagent VWR International EMGX0185-5
Kimberly-Clark™ Kimtech Science™ Kimwipes™ Delicate Task Wipers Fisher Scientific 06-666-A
Magnesium chloride, ACS grade VWR International 97061-356
Magnesium sulfate heptahydrate, ACS grade VWR International 97062-130
Microcentrifuge tubes, 1.5 mL
Microcentrifuge tubes, 2.2 mL
Mini Beadbeater-96, 115 volt Bio Spec Products Inc. 1001
Murashige & Skoog, Basal Salts Caisson Laboratories, Inc. MSP01-50LT
Pipet-Lite XLS LTS 8-CH Pipet 20-200uL Rainin L8-200XLS
Pipet-Lite XLS LTS 8-CH Pipet 2-20uL Rainin L8-20XLS
Polystyrene 100mm x 25mm sterile petri dish VWR International 89107-632
Polystyrene 150mm x 15mm sterile petri dish Fisher Scientific FB08-757-14
Polystyrene 150x15mm sterile petri dish Fisher Scientific 08-757-148
Pure Bright Germicidal Ultra Bleach 5.7% Available Chlorine (defined as 100% bleach) Staples 1013131
Rifampicin Gold Biotechnology R-120-25
Silwet L-77 (non-ionic organosilicone surfactant co-polymer C13H34O4Si3 surfactant) Fisher Scientific NCO138454
Tips LTS 20 μL 960/10 GPS-L10 Rainin 17005091
Tips LTS 250 μL 960/10 GPS-L250 Rainin 17005093
VWR dissecting forceps fine tip, 4.5" VWR International 82027-386

References

  1. Underwood, W., Melotto, M., He, S. Y. Role of plant stomata in bacterial invasion. Cell Microbiology. 9 (7), 1621-1629 (2007).
  2. Zipfel, C. Early molecular events in PAMP-triggered immunity. Current Opinion in Plant Biology. 12 (4), 414-420 (2009).
  3. Galan, J. E., Wolf-Watz, H. Protein delivery into eukaryotic cells by type III secretion machines. Nature. 444 (7119), 567-573 (2006).
  4. Lewis, J. D., Desveaux, D., Guttman, D. S. The targeting of plant cellular systems by injected type III effector proteins. Seminars in Cell and Developmental Biology. 20 (9), 1055-1063 (2009).
  5. Schreiber, K. J., Baudin, M., Hassan, J. A., Lewis, J. D. Die another day: molecular mechanisms of effector-triggered immunity elicited by type III secreted effector proteins. Seminars in Cell and Developmental Biology. 56, 124-133 (2016).
  6. Heath, M. C. Hypersensitive response-related death. Plant Molecular Biology. 44 (3), 321-334 (2000).
  7. Boyd, L. A., Ridout, C., O’Sullivan, D. M., Leach, J. E., Leung, H. Plant-pathogen interactions: disease resistance in modern agriculture. Trends in Genetics. 29 (4), 233-240 (2013).
  8. Pitblado, R. E., MacNeill, B. H. Genetic basis of resistance to Pseudomonas syringae pv. tomato in field tomatoes. Canadian Journal of Plant Pathology. 5 (4), 251-255 (1983).
  9. Pedley, K. F., Martin, G. B. Molecular basis of Pto-mediated resistance to bacterial speck disease in tomato. Annual Reviews of Phytopathology. 41, 215-243 (2003).
  10. Ronald, P. C., Salmeron, J. M., Carland, F. M., Mehta, A. Y., Staskawicz, B. J. The cloned avirulence gene AvrPto induces disease resistance in tomato cultivars containing the Pto resistance gene. Journal of Bacteriology. 174 (5), 1604-1611 (1992).
  11. Martin, G. B., et al. Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science. 262 (5138), 1432-1436 (1993).
  12. Salmeron, J. M., Barker, S. J., Carland, F. M., Mehta, A. Y., Staskawicz, B. J. Tomato mutants altered in bacterial disease resistance provide evidence for a new locus controlling pathogen recognition. Plant Cell. 6 (4), 511-520 (1994).
  13. Salmeron, J. M., et al. Tomato Prf is a member of the leucine-rich repeat class of plant disease resistance genes and lies embedded within the Pto kinase gene cluster. Cell. 86 (1), 123-133 (1996).
  14. Scofield, S. R., et al. Molecular basis of gene-for-gene specificity in bacterial speck disease of tomato. Science. 274 (5295), 2063-2065 (1996).
  15. Kunkeaw, S., Tan, S., Coaker, G. Molecular and evolutionary analyses of Pseudomonas syringae pv. tomato race 1. Molecular Plant-Microbe Interactions. 23 (4), 415-424 (2010).
  16. Cai, R., et al. The plant pathogen Pseudomonas syringae pv. tomato is genetically monomorphic and under strong selection to evade tomato immunity. PLoS Pathogens. 7 (8), 1002130 (2011).
  17. Almeida, N. F., et al. A draft genome sequence of Pseudomonas syringae pv. tomato T1 reveals a type III effector repertoire significantly divergent from that of Pseudomonas syringae pv. tomato DC3000. Molecular Plant-Microbe Interactions. 22 (1), 52-62 (2009).
  18. Lin, N. C., Abramovitch, R. B., Kim, Y. J., Martin, G. B. Diverse AvrPtoB homologs from several Pseudomonas syringae pathovars elicit Pto-dependent resistance and have similar virulence activities. Applied and Environmental Microbiology. 72 (1), 702-712 (2006).
  19. Rose, L. E., Langley, C. H., Bernal, A. J., Michelmore, R. W. Natural variation in the Pto pathogen resistance gene within species of wild tomato (Lycopersicon). I. Functional analysis of Pto alleles. 遗传学. 171 (1), 345-357 (2005).
  20. Thapa, S. P., Miyao, E. M., Davis, R. M., Coaker, G. Identification of QTLs controlling resistance to Pseudomonas syringae pv. tomato race 1 strains from the wild tomato Solanum habrochaites LA1777. Theoretical and Applied Genetics. 128 (4), 681-692 (2015).
  21. Bao, Z. L., et al. Identification of a candidate gene in Solanum habrochaites for resistance to a race 1 strain of Pseudomonas syringae pv. tomato. Plant Genome. 8 (3), 1-15 (2015).
  22. Hassan, J. A., Zhou, Y. J., Lewis, J. D. A rapid seedling resistance assay identifies wild tomato lines that are resistant to Pseudomonas syringae pv. tomato race 1. Molecular Plant-Microbe Interactions. 30 (9), 701-709 (2017).
  23. King, E. O., Ward, M. K., Raney, D. E. Two simple media for the demonstration of pyocyanin and fluorescin. Journal of Laboratory and Clinical Medicine. 44 (2), 301-307 (1954).
  24. Uppalapati, S. R., et al. Pathogenicity of Pseudomonas syringae pv. tomato on tomato seedlings: phenotypic and gene expression analyses of the virulence function of coronatine. Molecular Plant-Microbe Interactions. 21 (4), 383-395 (2008).
  25. Bhardwaj, V., Meier, S., Petersen, L. N., Ingle, R. A., Roden, L. C. Defence responses of Arabidopsis thaliana to infection by Pseudomonas syringae are regulated by the circadian clock. PLoS One. 6 (10), 26968 (2011).
  26. Lu, H., McClung, C. R., Zhang, C. Tick tock: circadian regulation of plant innate immunity. Annual Review of Phytopathology. 55, 287-311 (2017).
  27. Wang, W., et al. Timing of plant immune responses by a central circadian regulator. Nature. 470 (7332), 110-114 (2011).

Play Video

Cite This Article
Hassan, J. A., Chau-Ly, I. J., Lewis, J. D. High-Throughput Identification of Resistance to Pseudomonas syringae pv. Tomato in Tomato using Seedling Flood Assay. J. Vis. Exp. (157), e60805, doi:10.3791/60805 (2020).

View Video