Summary

聚丙烯酰胺凝胶电泳和银染色检测甘油糖

Published: February 25, 2021
doi:

Summary

本报告描述了从生物样本中分离和净化硫化甘油(GAGs)的技术,以及一种聚丙烯酰胺凝胶电泳方法,以接近其大小。GAG通过静电与蛋白质的相互作用,促进组织结构并影响信号过程。GAG 聚合物长度有助于它们对认知配体的结合亲和力。

Abstract

硫化甘油(GAGs),如硫酸肝(HS)和硫酸软骨蛋白(CS),在生物体中随处可见,在各种基本生物结构和过程中起着至关重要的作用。作为聚合物,GAG 作为聚氨酯混合物存在,其中含有聚糖链,范围从 4000 Da 到 40,000 DA 不等。在这些链条中存在着硫化领域,赋予负电荷模式,促进与认知蛋白配体的正电荷残留物的相互作用。GAG 的硫化域必须足够长度,以便进行这些静电相互作用。要了解GAG在生物组织中的功能,研究者必须能够分离、净化和测量GAG的大小。本报告描述了一种实用且多功能的聚丙烯酰胺凝胶电泳技术,该技术可利用该技术解决从各种生物组织类型中分离出来的 GAG 之间的相对较小的尺寸差异。

Introduction

糖氨糖(GAGs)是线性多糖的多样化家族,是生物体中无处不在的元素,有助于许多基本的生理过程1。硫酸肝素 (HS) 和软骨素硫酸盐 (CS) 等 GAG 可能会在多糖链的不同位置硫化,从而提供负电荷的地理域。这些GAG,当系在细胞表面的蛋白质称为蛋白糖,投射到细胞外空间,并结合识别配体,允许调节两个 cis-(利甘附着在同一细胞)和跨(利甘附着在相邻细胞)信号过程2。此外,GAG还作为结构元素在组织中发挥关键作用,如球状地下室膜3、血管内皮糖碱4和肺上皮糖糖6,以及结缔组织(如软骨6)。

GAG多糖链的长度因其生物背景而有很大差异,可以通过高度复杂的酶调控系统7动态延长、切割和修改。重要的是,GAG聚合物链的长度大大有助于它们对配体的结合亲和力,并随后对它们的生物功能8,9。因此,确定内源性GAG的功能需要对其大小进行欣赏。不幸的是,与蛋白质和核酸不同,很少有现成的技术来检测和测量GAG,这在历史上导致对这一多样化多糖家族的生物作用的调查相对有限。

本文描述了如何从大多数生物组织中分离和净化GAG,并描述了如何使用聚丙烯酰胺凝胶电泳(PAGE)来评估具有相当程度特异性的分离聚合物的长度。与其他高度复杂的(通常基于质谱)的糖电方法不同,这种方法可以使用标准的实验室设备和技术。因此,这种实际方法可以扩大调查人员确定本地GAG的生物作用及其与上下文重要配体的相互作用的能力。

Protocol

根据科罗拉多大学机构动物护理和使用委员会批准的协议,本协议中分析的所有生物样本均来自小鼠。 1. 肝硫酸盐隔离 组织样本的脱皮注:脱脂是富含脂肪组织的可选步骤。 制作甲醇和二氯甲烷的1:1混合物。每个样品准备约 500 μL;较大的组织块可能需要高达 1 mL。 将每个组织样本放入一个小玻璃容器中,盖上盖子,以进行熟食。注?…

Representative Results

阿尔西安蓝用于染色硫化GAG 10:此信号通过使用随后的银色污渍 11放大。 图1 提供了银染色开发过程的视觉演示。如前所示,当开发剂穿透聚丙烯酰胺凝胶时,代表电泳分离的 GAG 的阿尔西亚蓝色信号被放大。通常,开发过程将减少银色和阿尔西亚蓝色染色的GAG在密度依赖的方式,每个频段的边缘减少第一,而更密集的染色区域在中心将?…

Discussion

GAG 在许多不同的生物过程中发挥着核心作用。硫化 GAG(如 HS 和 CS)的主要功能之一是与配体交互并绑定,这可以改变下游信号功能。GAG 与认知配体结合亲和力的一个重要决定因素是 GAG 聚合物链的长度 8、9、14。 因此,研究人员必须能够合理精确地定义从感兴趣的生物样本中分离出来的GAG链的大小。为了实用,该技术应能够…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作由F31 HL143873-01(WBL),R01 HL125371(RJL和EPS)资助

Materials

Accuspin Micro17 benchtop microcentrifuge thermoFisher Scientific 13-100-675 Any benchtop microcentrifuge/rotor combination capable of 14000 xG is appropriate
Acrylamide (solid) thermoFisher Scientific BP170-100 Electrophoresis grade
Actinase E Sigma Aldrich P5147 Protease mix from S. griseus
Alcian Blue 8GX (solid) thermoFisher Scientific AC400460100
Ammonium acetate (solid) thermoFisher Scientific A639-500 Molecular biology grade
Ammonium hydroxide (liquid) thermoFisher Scientific A669S-500 certified ACS
Ammonium persulfate (solid) thermoFisher Scientific BP179-25 electrophoresis grade
Barnstead GenPure Pro Water Purification System ThermoFisher Scientific 10-451-217PKG Any water deionizing/ purification system is an acceptable substitute
Boric acid (solid) thermoFisher Scientific A73-500 Molecular biology grade
Bromphenol blue (solid) thermoFisher Scientific B392-5
Calcium acetate (solid) ThermoFisher Scientific 18-609-432 Molecular biology grade
Calcium chloride (solid) ThermoFisher Scientific AC349610250 Molecular biology grade
CHAPS detergent (3-((3-cholamidopropyl) dimethylammonio)-1-propanesulfonate) ThermoFisher Scientific 28299
Chondroitinase ABC Sigma Aldrich C3667
Criterion empty cassette for PAGE (1.0mm thick, 12+2 wells) Bio-Rad 3459901 Any 1.0mm thick PAGE casting cassette system will suffice
Criterion PAGE Cell system (cell and power supply) Bio-Rad 1656019 any comparable vertical gel PAGE system will work)
Dichloromethane (liquid) thermoFisher Scientific AC610931000 certified ACS
EDTA disodium salt (solid) thermoFisher Scientific 02-002-786 Molecular biology grade
Glacial acetic acid (liquid) thermoFisher Scientific A35-500 Certified ACS
Glycine (solid) thermoFisher Scientific G48-500 Electrophoresis grade
Heparanase I/III Sigma Aldrich H3917 From Flavobacterium heparinum
Heparin derived decasaccharide (dp10) galen scientific HO10
Heparin derived hexasaccharde (dp6) Galen scientific HO06
Heparin derived oligosaccharide (dp20) galen scientific HO20
Hydrochloric acid (liquid) thermoFisher Scientific A466-250
Lyophilizer Labconco 7752020 Any lyophilizer that can achieve -40C and 0.135 Torr will work; can also be replaced with rotational vacuum concentrator
Methanol (liquid) thermoFisher Scientific A412-500 Certified ACS
Molecular Imager Gel Doc XR System Bio-Rad 170-8170 Any comparable gel imaging system is an acceptable substitute
N,N'-methylene-bis-acrylamide (solid) thermoFisher Scientific BP171-25 Electrophoresis grade
Phenol red (solid) thermoFisher Scientific P74-10 Free acid
Q Mini H Ion Exchange Column Vivapure VS-IX01QH24 Ion exchange column must have minimum loading volume of 0.4mL, working pH of 2-12, and selectivity for ionic groups with pKa of 11
Silver nitrate (solid) thermoFisher Scientific S181-25 certified ACS
Sodium Acetate (solid) ThermoFisher Scientific S210-500 Molecular biology grade
Sodium chloride (solid) thermoFisher Scientific S271-500 Molecular biology grade
Sodium hydroxide (solid) thermoFisher Scientific S392-212
Sucrose (solid) thermoFisher Scientific BP220-1 Molecular biology grade
TEMED (N,N,N',N'-tetramethylenediamine) thermoFisher Scientific BP150-20 Electrophoresis grade
Tris base (solid) thermoFisher Scientific BP152-500 Molecular biology grade
Ultra Centrifugal filters, 0.5mL, 3000 Da molecular weight cutoff Amicon UFC500324 Larger volume filter units may be used, depending on sample size. 
Urea (solid) ThermoFisher Scientific 29700
Vacufuge Plus Eppendorf 22820001 Any rotational vacuum concentrator will work; can be replaced with lyophilizer
Vacuum filter unit, single use, 0.22uM pore PES, 500mL volume thermoFisher Scientific 569-0020 Alternative volumes and filter materials acceptable

References

  1. LaRivière, W. B., Schmidt, E. P. The pulmonary endothelial glycocalyx in ARDS: A critical role for heparan sulfate. Current Topics in Membrane. 82, 33-52 (2018).
  2. Haeger, S. M., Yang, Y., Schmidt, E. P. Heparan sulfate in the developing, healthy, and injured lung. American Journal of Respiratory Cell and Molecular Biology. 55 (1), 5-11 (2016).
  3. Morita, H., Yoshimura, A., Kimata, K. The role of heparan sulfate in the glomerular basement membrane. Kidney International. 73 (3), 247-248 (2008).
  4. Schmidt, E. P., et al. The pulmonary endothelial glycocalyx regulates neutrophil adhesion and lung injury during experimental sepsis. Nature Medicine. 18 (8), 1217-1223 (2012).
  5. Haeger, S. M., et al. Epithelial heparan sulfate contributes to alveolar barrier function and is shed during lung injury. American Journal of Respiratry Cell and Molecular Biology. 59 (3), 363-374 (2018).
  6. Mankin, H. J., Lippiello, L. The glycosaminoglycans of normal and arthritic cartilage. Journal of Clinical Investigation. 50 (8), 1712-1719 (1971).
  7. Annaval, T., et al. Heparan sulfate proteoglycans biosynthesis and post synthesis mechanisms combine few enzymes and few core proteins to generate extensive structural and functional diversity. Molecules. 25 (18), (2020).
  8. Zhang, F., et al. Comparison of the interactions of different growth factors and glycosaminoglycans. Molecules. 24 (18), (2019).
  9. Pempe, E. H., Xu, Y., Gopalakrishnan, S., Liu, J., Harris, E. N. Probing structural selectivity of synthetic heparin binding to Stabilin protein receptors. Journal of Biological Chemistry. 287 (25), 20774-20783 (2012).
  10. Cowman, M. K., et al. Polyacrylamide-gel electrophoresis and Alcian Blue staining of sulphated glycosaminoglycan oligosaccharides. Biochemical Journal. 221 (3), 707-716 (1984).
  11. Møller, H. J., Poulsen, J. H. Improved method for silver staining of glycoproteins in thin sodium dodecyl sulfate polyacrylamide gels. Analytical Biochemistry. 226 (2), 371-374 (1995).
  12. Min, H., Cowman, M. K. Combined alcian blue and silver staining of glycosaminoglycans in polyacrylamide gels: Application to electrophoretic analysis of molecular weight distribution. Analytical Biochemistry. 155 (2), 275-285 (1986).
  13. Jay, G. D., Culp, D. J., Jahnke, M. R. Silver staining of extensively glycosylated proteins on sodium dodecyl sulfate-polyacrylamide gels: Enhancement by carbohydrate-binding dyes. Analytical Biochemistry. 185 (2), 324-330 (1990).
  14. Abraham, E., et al. Liposomal prostaglandin E1 (TLC C-53) in acute respiratory distress syndrome: a controlled, randomized, double-blind, multicenter clinical trial. TLC C-53 ARDS Study Group. Critical Care Medicine. 27 (8), 1478-1485 (1999).
  15. Pervin, A., al-Hakim, A., Linhardt, R. J. Separation of glycosaminoglycan-derived oligosaccharides by capillary electrophoresis using reverse polarity. Analytical Biochemistry. 221 (1), 182-188 (1994).
  16. Wang, Z., Zhang, F., Dordick, J. S., Linhardt, R. J. Molecular mass characterization of glycosaminoglycans with different degrees of sulfation in bioengineered heparin process by size exclusion chromatography. Current Analytical Chemistry. 8 (4), 506-511 (2012).
  17. Pepi, L. E., Sanderson, P., Stickney, M., Amster, I. J. Developments in mass spectrometry for glycosaminoglycan analysis: A review. Molecular and Cellular Proteomics. , 100025 (2021).
  18. Whiteman, P. The quantitative measurement of Alcian Blue-glycosaminoglycan complexes. Biochemical Journal. 131 (2), 343-350 (1973).
  19. Yuan, H., et al. Molecular mass dependence of hyaluronan detection by sandwich ELISA-like assay and membrane blotting using biotinylated hyaluronan binding protein. Glycobiology. 23 (11), 1270-1280 (2013).
check_url/cn/62319?article_type=t

Play Video

Cite This Article
LaRiviere, W. B., Han, X., Oshima, K., McMurtry, S. A., Linhardt, R. J., Schmidt, E. P. Detection of Glycosaminoglycans by Polyacrylamide Gel Electrophoresis and Silver Staining. J. Vis. Exp. (168), e62319, doi:10.3791/62319 (2021).

View Video