Summary

卡利内克特氏菌中神经肽的多方面质谱研究

Published: May 31, 2022
doi:

Summary

神经肽的质谱表征提供序列、定量和定位信息。这种优化的工作流程不仅对神经肽研究有用,而且对其他内源性肽也很有用。此处提供的方案描述了使用 LC-ESI-MS、MALDI-MS 点斑和 MALDI-MS 成像的神经肽的样品制备、MS 采集、MS 分析和神经肽的数据库生成。

Abstract

神经肽是调节几乎所有生理和行为过程的信号分子,如发育,繁殖,食物摄入和对外部压力源的反应。然而,神经肽的生化机制和完全补充及其功能作用仍然知之甚少。这些内源性肽的表征受到这类信号分子中巨大多样性的阻碍。此外,神经肽在浓度比神经递质低100倍 -1000倍时具有生物活性,并且在突触释放后容易发生酶降解。质谱(MS)是一种高度灵敏的分析工具,无需全面的 先验 知识即可识别,定量和定位分析物。它非常适合全局分析神经肽并帮助发现新型肽。由于这类肽的低丰度和高化学多样性,几种样品制备方法,MS采集参数和数据分析策略已从蛋白质组学技术中改编,以实现最佳的神经肽表征。在这里,描述了使用液相色谱(LC)-MS和基质辅助激光解吸/电离(MALDI)-MS从复杂生物组织中分离神经肽的方法,以进行序列表征,定量和定位。包括从蓝蟹Callinectes sapidus(一种没有全面基因组信息的生物体)制备神经肽数据库的方案。这些工作流程可以适应使用各种仪器研究不同物种中的其他类别的内源性肽。

Introduction

神经系统是复杂的,需要一个神经元网络来传递整个生物体的信号。神经系统协调感觉信息和生物反应。信号传输中涉及的复杂和复杂的相互作用需要许多不同的信号分子,如神经递质,类固醇和神经肽。由于神经肽是最多样化和最有效的信号分子,在激活对压力和其他刺激的生理反应中起关键作用,因此确定它们在这些生理过程中的特定作用是有趣的。神经肽功能与其氨基酸结构有关,这决定了迁移性,受体相互作用和亲和力1。诸如组织化学之类的技术很重要,因为神经肽可以在组织的不同区域合成,储存和释放,并且电生理学已被用于研究神经肽结构和功能234,但这些方法受到通量和特异性的限制,以解决神经肽的巨大序列多样性。

质谱(MS)能够对神经肽结构和丰度进行高通量分析。这可以通过不同的MS技术进行,最常见的是液相色谱 – 电喷雾电离MS(LC-ESI-MS)5 和基质辅助激光解吸/电离MS(MALDI-MS)6。利用高精度的质量测量和MS片段化,MS提供了在没有 先验 知识的情况下将氨基酸序列和翻译后修饰(PTM)状态分配给复杂混合物中的神经肽的能力,以帮助确定其功能78。除定性信息外,MS还通过无标记定量(LFQ)或基于标记的方法(如同位素或等压标记)实现神经肽的定量信息9。LFQ的主要优点包括其简单性,分析成本低,样品制备步骤减少,可以最大限度地减少样品损失。然而,LFQ的缺点包括仪器时间成本增加,因为它需要多次技术重复来解决运行间变异性的定量误差。这也导致准确量化微小变异的能力下降。基于标记的方法受到的系统变化较小,因为可以使用各种稳定同位素对多个样品进行差异标记,组合成一个样品,并同时通过质谱分析。这也增加了通量,尽管同位素标记可能非常耗时且成本高昂,用于合成或购买。全扫描质谱(MS1)光谱复杂性也随着多重检测的增加而增加,这减少了能够被分割并因此被鉴定的独特神经肽的数量。相反,等压标记不会增加MS1水平的光谱复杂性,尽管它为低丰度分析物(如神经肽)带来了挑战。由于等压定量是在片段离子质谱(MS2)水平上进行的,因此低丰度神经肽可能无法定量,因为可以选择更丰富的基质成分进行片段化,并且选择的那些可能没有足够高的丰度来量化。通过同位素标记,可以对每个鉴定的肽进行定量。

除了鉴定和定量外,MS还可以通过MALDI-MS成像(MALDI-MSI)10获得定位信息。通过在样品表面上对激光进行光栅,可以将MS光谱编译为每个 m / z 值的热图图像。绘制不同区域不同条件下瞬时神经肽信号强度的图谱可以为功能测定11提供有价值的信息。神经肽的定位尤其重要,因为神经肽功能可能因位置12而异。

神经肽在 体内 的丰度低于其它信号分子,例如神经递质,因此需要灵敏的检测方法13。这可以通过去除更高丰度的基质成分来实现,例如脂质1114。与常见的蛋白质组学工作流程相比,需要对神经肽分析进行其他考虑,主要是因为大多数神经肽组学分析忽略了酶消化。这限制了神经肽数据分析的软件选项,因为大多数都是使用基于蛋白质组学数据和肽检测通知的蛋白质匹配的算法构建的。然而,许多软件如PEAKS15 由于其 从头 测序功能而更适合神经肽分析。从提取方法到MS数据分析,神经肽的分析需要考虑几个因素。

这里描述的方案包括用于样品制备和二甲基同位素标记,数据采集以及通过LC-ESI-MS,MALDI-MS和MALDI-MSI对神经肽进行数据分析的方法。通过来自几个实验的代表性结果,证明了这些方法鉴定,定量和定位来自蓝蟹 Callinectes sapidus的神经肽的效用和能力。为了更好地理解神经系统,通常使用模型系统。许多生物体没有完全测序的基因组,这阻碍了肽水平的全面神经肽发现。为了减轻这一挑战,包括一种用于鉴定新型神经肽和转录组挖掘的协议,以生成没有完整基因组信息的生物体的数据库。这里介绍的所有方案都可以针对任何物种的神经肽样品进行优化,并应用于任何内源性肽的分析。

Protocol

所描述的所有组织采样均按照威斯康星大学麦迪逊分校的指南进行。 1. 神经肽的LC-ESI-MS分析 神经肽提取和脱盐 在组织获取之前,制备酸化甲醇(acMeOH)(90:9:1 MeOH:水:乙酸),如16所述。 从甲壳类动物17 中收集脑组织,并使用镊子立即将每个组织放入含有20μLacMeOH的0.6mL管中。注意:不同动物和不…

Representative Results

样品制备和MS分析的工作流程如图 1所示。解剖神经元组织后,进行均质化,提取和脱盐以纯化神经肽样品。如果需要基于同位素标记的定量,则再次标记样品并脱盐。通过LC-MS / MS分析所得样品以进行神经肽鉴定和定量。 通过蛋白质组学软件鉴定的神经肽应具有良好的肽片段化序列覆盖率,然而,这并不是全局定义或标准化的。对于绝对鉴定,每个氨基…

Discussion

在神经系统中发现的神经肽和内源性肽的准确鉴定,定量和定位对于理解其功能至关重要2324。质谱是一种强大的技术,可以完成所有这些工作,即使在没有完全测序基因组的生物体中也是如此。该协议通过LC-ESI-和MALDI-MS的组合检测,定量和定位从 C. sapidus 收集的组织中的神经肽的能力得到了证明。

在LC-ESI-MS分析的样品制?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项研究得到了美国国家科学基金会(CHE-1710140和CHE-2108223)和美国国立卫生研究院(NIH)通过R01DK071801的支持。AP得到了NIH化学 – 生物学界面培训补助金(T32 GM008505)的部分支持。N.V.Q.得到了美国国立卫生研究院的部分支持,从国家心肺和血液研究所到威斯康星大学麦迪逊分校心血管研究中心(T32 HL007936)的Ruth L. Kirschstein国家研究服务奖。L.L.感谢NIH拨款R56 MH110215,S10RR029531和S10OD025084,以及Vilas杰出成就教授职位和Charles Melbourne Johnson教授职位的资金支持,由威斯康星州校友研究基金会和威斯康星大学麦迪逊分校药学院提供资金。

Materials

Chemicals, Reagents, and Consumables
2,5-Dihydroxybenzoic acid (DHB) matrix Supelco 39319
Acetic acid Fisher Chemical A38S-500
Acetonitrile Optima LC/MS grade Fisher Chemical A955-500
Ammonium bicarbonate Sigma-Aldrich 9830
Borane pyridine Sigma-Aldrich 179752
Bruker peptide calibration mix Bruker Daltonics NC9846988
Capillary Polymicro 1068150019 to make nanoflow column (75 µm inner diameter x 360 µm outer diameter)
Cryostat cup Sigma-Aldrich E6032 any cup or mold should work
 Microcentrifuge Tubes Eppendorf 30108434
Formaldehyde Sigma-Aldrich 252549
Formaldehyde – D2 Sigma-Aldrich 492620
Formic acid Optima LC/MS grade Fisher Chemical A117-50
Gelatin Difco 214340 place in 37 °C water bath to melt
Hydrophobic barrier pen Vector Labs 15553953
Indium tin oxide (ITO)-coated glass slides Delta Technologies CB-90IN-S107 25 mm x 75 mm x 0.8 mm (width x length x thickness)
LC-MS vials Thermo TFMSCERT5000-30LVW
Methanol Optima LC/MS Grade Fisher Chemical A456-500
Parafilm Sigma-Aldrich P7793 Hydrophobic film
pH-Indicator strips Supelco 109450
Red phosphorus clusters Sigma-Aldrich 343242
Reversed phase C18 material Waters 186002350 manually packed into nanoflow column
Wite-out pen BIC 150810
ZipTip Millipore Z720070
Instruments and Tools
Automatic matrix sprayer system- M5 HTX Technologies, LLC
Centrifuge – 5424 R Eppendorf 05-401-205
Cryostat- HM 550 Thermo Fisher Scientific 956564A
Desiccant Drierite 2088701
Forceps WPI 501764
MALDI stainless steel target plate Bruker Daltonics 8280781
Pipet-Lite XLS Rainin 17014391 200 µL
Q Exactive Plus Hybrid Quadrupole-Orbitrap Thermo Fisher Scientific IQLAAEGAAPFALGMBDK
RapifleX MALDI-TOF/TOF Bruker Daltonics
SpeedVac – SVC100 Savant SVC-100D
Ultrasonic Cleaner Bransonic 2510R-MTH for sonication
Ultrasonic homogenizer Fisher Scientific FB120110 FB120 Sonic Dismembrator with CL-18 Probe
Vaccum pump- Alcatel 2008 A Ideal Vacuum Products P10976 ultimate pressure = 1 x 10-4 Torr
Vortex Mixer Corning 6775
Water bath (37C) – Isotemp 110 Fisher Scientific 15-460-10
Data Analysis Software
Expasy https://web.expasy.org/translate/
FlexAnalysis Bruker Daltonics
FlexControl Bruker Daltonics
FlexImaging Bruker Daltonics
PEAKS Studio Bioinformatics Solutions, Inc.
SCiLS Lab https://scils.de/
SignalP 5.0 https://services.healthtech.dtu.dk/service.php?SignalP-5.0
tBLASTn http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=tblastn&BLAST_
PROGRAMS=tblastn&PAGE_
TYPE=BlastSearch&SHOW_
DEFAULTS=on&LINK_LOC
=blasthome

References

  1. Hökfelt, T., et al. Neuropeptides – an overview. Neuropharmacology. 39 (8), 1337-1356 (2000).
  2. Radhakrishnan, V., Henry, J. L. Electrophysiology of neuropeptides in the sensory spinal cord. Progress in Brain Research. 104, 175-195 (1995).
  3. Nässel, D. R., Ekström, P. Detection of neuropeptides by immunocytochemistry. Methods in Molecular Biology. 72, 71-101 (1997).
  4. Martins, J., et al. Activation of Neuropeptide Y Receptors Modulates Retinal Ganglion Cell Physiology and Exerts Neuroprotective Actions In Vitro. ASN Neuro. 7 (4), 1759091415598292 (2015).
  5. Racaityte, K., Lutz, E. S. M., Unger, K. K., Lubda, D., Boos, K. S. Analysis of neuropeptide Y and its metabolites by high-performance liquid chromatography-electrospray ionization mass spectrometry and integrated sample clean-up with a novel restricted-access sulphonic acid cation exchanger. Journal of Chromatography. A. 890 (1), 135-144 (2000).
  6. Salisbury, J. P., et al. A rapid MALDI-TOF mass spectrometry workflow for Drosophila melanogaster differential neuropeptidomics. Molecular Brain. 6, 60 (2013).
  7. Schmerberg, C. M., Li, L. Function-driven discovery of neuropeptides with mass spectrometry-based tools. Protein and Peptide Letters. 20 (6), 681-694 (2013).
  8. Lee, J. E. Neuropeptidomics: Mass Spectrometry-Based Identification and Quantitation of Neuropeptides. Genomics & Informatics. 14 (1), 12-19 (2016).
  9. Sauer, C. S., Phetsanthad, A., Riusech, O. L., Li, L. Developing mass spectrometry for the quantitative analysis of neuropeptides. Expert Review of Proteomics. 18 (7), 607-621 (2021).
  10. Pratavieira, M., et al. MALDI Imaging Analysis of Neuropeptides in Africanized Honeybee ( Apis mellifera) Brain: Effect of Aggressiveness. Journal of Proteome Research. 17 (7), 2358-2369 (2018).
  11. Buchberger, A. R., Vu, N. Q., Johnson, J., DeLaney, K., Li, L. A Simple and Effective Sample Preparation Strategy for MALDI-MS Imaging of Neuropeptide Changes in the Crustacean Brain Due to Hypoxia and Hypercapnia Stress. Journal of the American Society for Mass Spectrometry. 31 (5), 1058-1065 (2020).
  12. Vu, N. Q., DeLaney, K., Li, L. Neuropeptidomics: Improvements in Mass Spectrometry Imaging Analysis and Recent Advancements. Current Protein & Peptide Science. 22 (2), 158-169 (2021).
  13. Li, L., Sweedler, J. V. Peptides in the brain: mass spectrometry-based measurement approaches and challenges. Annual Review of Analytical Chemistry (Palo Alto, Calif). 1, 451-483 (2008).
  14. Li, N., et al. Sequential Precipitation and Delipidation Enables Efficient Enrichment of Low-Molecular Weight Proteins and Peptides from Human Plasma. Journal of Proteome Research. 19 (8), 3340-3351 (2020).
  15. Zhang, J., et al. PEAKS DB: de novo sequencing assisted database search for sensitive and accurate peptide identification. Molecular & Cellular Proteomics : MCP. 11 (4), (2012).
  16. Sturm, R. M., Greer, T., Woodards, N., Gemperline, E., Li, L. Mass spectrometric evaluation of neuropeptidomic profiles upon heat stabilization treatment of neuroendocrine tissues in crustaceans. Journal of Proteome Research. 12 (2), 743-752 (2013).
  17. Gutierrez, G. J., Grashow, R. G. Cancer borealis stomatogastric nervous system dissection. Journal of Visualized Experiments: JoVE. (25), e1207 (2009).
  18. DeLaney, K., et al. PRESnovo: Prescreening Prior to de novo Sequencing to Improve Accuracy and Sensitivity of Neuropeptide Identification. Journal of the American Society for Mass Spectrometry. 31 (7), 1358-1371 (2020).
  19. Oleisky, E. R., Stanhope, M. E., Hull, J. J., Christie, A. E., Dickinson, P. S. Differential neuropeptide modulation of premotor and motor neurons in the lobster cardiac ganglion. Journal of Neurophysiology. 124 (4), 1241-1256 (2020).
  20. Ma, M., et al. Combining in silico transcriptome mining and biological mass spectrometry for neuropeptide discovery in the Pacific white shrimp Litopenaeus vannamei. Peptides. 31 (1), 27-43 (2010).
  21. Christie, A. E., Stemmler, E. A., Dickinson, P. S. Crustacean neuropeptides. Cellular and Molecular Life Sciences : CMLS. 67 (24), 4135-4169 (2010).
  22. DeLaney, K., et al. New techniques, applications and perspectives in neuropeptide research. The Journal of Experimental Biology. 221, (2018).
  23. Habenstein, J., et al. Transcriptomic, peptidomic, and mass spectrometry imaging analysis of the brain in the ant Cataglyphis nodus. Journal of Neurochemistry. 158 (2), 391-412 (2021).
  24. Maes, K., et al. Improved sensitivity of the nano ultra-high performance liquid chromatography-tandem mass spectrometric analysis of low-concentrated neuropeptides by reducing aspecific adsorption and optimizing the injection solvent. Journal of Chromatography. A. 1360, 217-228 (2014).
  25. Li, G., et al. Nanosecond photochemically promoted click chemistry for enhanced neuropeptide visualization and rapid protein labeling. Nature Communications. 10 (1), 4697 (2019).
  26. Corbière, A., et al. Strategies for the Identification of Bioactive Neuropeptides in Vertebrates. Frontiers in Neuroscience. 13, 948 (2019).
  27. Chen, R., Ma, M., Hui, L., Zhang, J., Li, L. Measurement of neuropeptides in crustacean hemolymph via MALDI mass spectrometry. Journal of American Society for Mass Spectrometry. 20 (4), 708-718 (2009).
  28. Fridjonsdottir, E., Nilsson, A., Wadensten, H., Andrén, P. E. Brain Tissue Sample Stabilization and Extraction Strategies for Neuropeptidomics. Peptidomics: Methods and Strategies. , 41-49 (2018).
  29. Buchberger, A. R., DeLaney, K., Johnson, J., Li, L. Mass Spectrometry Imaging: A Review of Emerging Advancements and Future Insights. Analytical Chemistry. 90 (1), 240-265 (2018).
  30. Phetsanthad, A., et al. Recent advances in mass spectrometry analysis of neuropeptides. Mass Spectrometry Reviews. , 21734 (2021).
  31. Pérez-Cova, M., Bedia, C., Stoll, D. R., Tauler, R., Jaumot, J. MSroi: A pre-processing tool for mass spectrometry-based studies. Chemometrics and Intelligent Laboratory Systems. 215, 104333 (2021).
  32. Christie, A. E., Chi, M. Prediction of the neuropeptidomes of members of the Astacidea (Crustacea, Decapoda) using publicly accessible transcriptome shotgun assembly (TSA) sequence data. General and Comparative Endocrinology. 224, 38-60 (2015).
  33. Livnat, I., et al. A d-Amino Acid-Containing Neuropeptide Discovery Funnel. Analytical Chemistry. 88 (23), 11868-11876 (2016).
  34. Lehrer, R. I., Ganz, T. Defensins: endogenous antibiotic peptides from human leukocytes. Ciba Foundation Symposium. 171, 276-290 (1992).
check_url/cn/63322?article_type=t

Play Video

Cite This Article
Phetsanthad, A., Vu, N. Q., Li, L. Multi-Faceted Mass Spectrometric Investigation of Neuropeptides in Callinectes sapidus. J. Vis. Exp. (183), e63322, doi:10.3791/63322 (2022).

View Video