Summary

评估交配蜜蜂女王的农用化学品风险

Published: March 03, 2021
doi:

Summary

该协议的制定是为了加强对农用化学品如何影响蜜蜂(Apis mellifera)繁殖的理解,方法是建立方法,在受控的实验室环境中将蜜蜂及其工人看护人暴露于农用化学品中,并仔细监测它们的相关反应。

Abstract

目前对蜜蜂的风险评估策略在很大程度上依赖于对成年或未成熟的工蜂进行的实验室测试,但这些方法可能无法准确捕获农用化学品暴露对蜂王的影响。作为蜜蜂群落内受精卵的唯一生产者,蜂王可以说是一个正常运作的蜂群中最重要的单一成员。因此,了解农用化学品如何影响蜂王健康和生产力应被视为农药风险评估的一个关键方面。在这里,提出了一种适应性的方法,使蜜蜂蜂王和工蜂王服务员暴露于通过工人饮食施用的农用化学品应激源,然后在实验室中跟踪产卵量,并使用专门的笼子(称为蜂王监测笼)评估第一龄的关闭情况。为了说明该方法的预期用途,描述了一项实验的结果,其中工人女王服务员被喂食含有亚致死剂量的吡虫啉的饮食,并监测了对女王的影响。

Introduction

由于全球对农产品的需求增加,现代农业实践通常需要使用农用化学品来控制已知会降低或损害作物产量的众多害虫1。同时,许多水果,蔬菜和坚果作物的种植者依靠商业蜜蜂群落提供的授粉服务来确保丰收2。这些做法可能导致传粉媒介,包括蜜蜂(Apis mellifera),暴露于有害水平的农药残留3。同时,蜜蜂群落中广泛存在的寄生Varroa破坏螨虫侵扰经常需要养蜂人用杀螨剂处理其蜂巢,这也可能对蜂群的健康和寿命产生负面影响4,5,6。为了减少和减轻农用化学品的有害影响,有必要在实施之前全面评估其对蜜蜂的安全性,以便提出使用建议以保护有益昆虫。

目前,环境保护署(EPA)依靠对蜜蜂农药暴露的分层风险评估策略,其中包括对成年蜜蜂和有时对蜜蜂幼虫7进行实验室测试。如果较低级别的实验室检查无法减轻对毒性的担忧,则可能建议进行高级别的现场和半现场测试。虽然这些实验室测试为农用化学品对工人寿命的潜在影响提供了有价值的见解,但它们并不一定预测它们对女王的影响,这与工人生物学8行为9显着不同。此外,农用化学品对昆虫有许多潜在的影响,除了死亡之外,这可能对依靠协调行为作为殖民地单位10,11的社会昆虫产生相当大的影响。

虽然死亡率是农用化学品最普遍考虑的影响12,但这些产品可以对目标和非目标节肢动物产生广泛的影响,包括改变行为13,14,15,16,排斥性或吸引性17,18,19,进食模式的变化20,21,22和增加或减少的生育能力20,21,22,23,24,25。对于群居昆虫来说,这些影响会系统性地破坏群体的相互作用和功能11。在这些功能中,严重依赖由殖民地单元9的其余部分支持的单个产卵女王的繁殖可能特别容易受到农药暴露的干扰。

对未成熟的蚁后进行的研究表明,发育暴露于杀螨剂会影响成年蚁后的行为,生理学,存活率26,27。类似地,使用全尺寸或缩小尺寸的菌落的研究表明,农用化学品可以通过减少交配成功率28,减少产卵29和降低产生的卵的生存能力来影响成年蜂王25,30,31。以前,如果不使用整个菌落,这些现象很难观察到,这主要是由于缺乏可用的实验室方法。然而,最近已经采用了一种使用女王监测笼(QMC)32在严格控制的实验室条件下研究女王产卵的方法,以检查农用化学品对女王生育能力的影响33。在这里,详细介绍了这些技术以及测量和跟踪QMC中工人饮食消耗的其他方法。

这些方法比需要全尺寸菌落的实验更有利,因为它们允许向大大减少的工人数量施用精确剂量的农用化学品,相对于通常存在于蚁群内的数万人然后蚁后提供蚁后。这种曝光技术反映了女王在现实世界中会经历的二手曝光,因为在蚁群中,蚁后不会自己进食,而是依靠工人为它们提供饮食9。同样,蚁后通常不会离开蜂巢,除非在蜂群繁殖(蜂群)期间交配飞行35。交配的蜂王可以从商业蜂王种购买并在一夜之间发货。通常,女王育种者在确认它们已经开始产卵后直接出售女王,这被视为成功交配的标志。如果需要有关女王年龄或亲缘关系的更精确信息,研究人员可以在下订单之前咨询女王育种者。

QMC可以精确观察和量化蜂王的产卵和卵孵化率32,33,产生与农用化学品暴露对蜂王繁殖力的影响相关的宝贵数据。这里提出的代表性结果描述了在长期暴露于全身性神经毒性剂新烟碱类杀虫剂吡虫啉36的现场相关浓度下量化QMC的产卵,饮食消耗和胚胎活力的实验。一旦施用,吡虫啉会转移到植物组织37,并且已经检测到许多蜜蜂授粉植物的花粉和花蜜38,39,40的残留物。暴露于吡虫啉会对蜜蜂产生广泛的不利影响,包括觅食性能受损16,免疫功能受损41,以及群体扩张和存活率下降42,43。在这里,选择吡虫啉作为测试物质,因为田间实验表明它可以影响蜂王产卵29

Protocol

1. QMC组装 从部件(图1A)组装QMC,插入一个产卵板(ELP),如图 1B所示。在将工人添加到笼子之前,不要添加喂料管。用实验室级胶带暂时覆盖 4 个进纸器孔。 将蜂王排除器和喂食室门插入喂养室上方,以防止蜂王进入喂养室并接触经过处理的饮食。有关更多组装详细信息,请参见 Fine 等人32。 在成年休养前24?…

Representative Results

在如上所述组装和维护的QMC中监测鸡蛋的产量,每天观察一次鸡蛋产量和每个处理组15个网箱。新交配的主要是卡尼奥兰种的蜂王从女王饲养员那里购买并连夜运输,并且蜜蜂工人是从伊利诺伊大学厄巴纳 – 香槟分校的蜜蜂研究设施中按照标准商业方法维护的3个蜂群中获得的。这里,使用4个饮食治疗组:1)蔗糖溶液和花粉补充剂中的50 ppb(g / g)吡虫啉(50 ppb – p + s),2)蔗糖溶液和花粉补充剂…

Discussion

雌性独居昆虫以及真社会昆虫群落中的蚁后的繁殖力可能受到非生物应激源的影响,例如农用化学品25,28,29,30,33。在蜜蜂中,农用化学品对蜂王的影响可能是间接的,因为它们可以通过工蜂的护理和喂养的变化而发生。我们的代表性结果与基于现场的研究2…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

感谢Amy Cash-Ahmed博士,Nathanael J. Beach和Alison L. Sankey在开展这项工作时提供的帮助。本出版物中提及商品名称或商业产品仅用于提供特定信息,并不意味着美国农业部的推荐或认可。美国农业部是一个机会均等的提供者和雇主。这项研究得到了国防高级研究计划局#HR0011-16-2-0019对Gene E. Robinson和Huimin Zhao,USDA项目2030-21000-001-00-D以及伊利诺伊大学厄巴纳香槟分校社区学院学生表型可塑性研究经验的支持。

Materials

Fluon BioQuip, Rancho Dominguez, CA 2871A
Honey bee queens Olivarez Honey Bees, Orland, CA
Imidacloprid Sigma-Aldritch, St. Louis, MO 37894
MegaBee Powder MegaBee, San Dieago, CA
Microcentrifuge tubes 2 mL ThermoFisher Scientific, Waltham, MA 02-682-004
Needles 20 gauge W. W. Grainger, Lake Forest, IL 5FVK4
Potassium Sulfate Sigma-Aldritch, St. Louis, MO P0772
Queen Monitoring Cages University of Illinois Urbana-Champaign Patent application number: 20190350175
Sucrose Sigma-Aldritch, St. Louis, MO S8501
Universal Microplate Lids ThermoFisher Scientific, Waltham, MA 5500

Referenzen

  1. Hedlund, J., Longo, S. B., York, R. Agriculture, pesticide use, and economic development: A global examination (1990-2014). Rural Sociology. 85 (2), 519-544 (2020).
  2. Calderone, N. W. Insect pollinated crops, insect pollinators and US agriculture: Trend analysis of aggregate data for the period 1992-2009. PLOS ONE. 7 (5), 37235 (2012).
  3. Johnson, R. M., Ellis, M. D., Mullin, C. A., Frazier, M. Pesticides and honey bee toxicity – USA. Apidologie. 41 (3), 312-331 (2010).
  4. Walsh, E. M., Sweet, S., Knap, A., Ing, N., Rangel, J. Queen honey bee (Apis mellifera) pheromone and reproductive behavior are affected by pesticide exposure during development. Behavioral Ecology and Sociobiology. 74 (3), 33 (2020).
  5. Zhu, W., Schmehl, D. R., Mullin, C. A., Frazier, J. L. Four Common Pesticides, Their Mixtures and a Formulation Solvent in the Hive Environment Have High Oral Toxicity to Honey Bee Larvae. PLoS ONE. 9 (1), 77547 (2014).
  6. Fisher, A., Rangel, J. Exposure to pesticides during development negatively affects honey bee (Apis mellifera) drone sperm viability. PLoS ONE. 13 (12), 0208630 (2018).
  7. How we assess risks to pollinators. US EPA Available from: https://www.epa.gov/pollinator-protection/how-we-assess-risk-polliators (2013)
  8. Snodgrass, R. E. . Anatomy of the honey bee. , (1956).
  9. Allen, M. D. The honeybee queen and her attendants. Animal Behaviour. 8 (3), 201-208 (1960).
  10. Hölldobler, B., Wilson, E. O. . The superorganism: The beauty, elegance, and strangeness of insect societies. , (2009).
  11. Berenbaum, M. R., Liao, L. -. H. Honey bees and environmental stress: Toxicologic pathology of a superorganism. Toxicologic Pathology. 47 (8), 1076-1081 (2019).
  12. Yu, S. J. . The toxicology and biochemistry of insecticides. , (2014).
  13. Ciarlo, T. J., Mullin, C. A., Frazier, J. L., Schmehl, D. R. Learning impairment in honey bees caused by agricultural spray adjuvants. PloS One. 7 (7), 40848 (2012).
  14. Fourrier, J., et al. Larval exposure to the juvenile hormone analog pyriproxyfen disrupts acceptance of and social behavior performance in adult honeybees. PLoS ONE. 10 (7), (2015).
  15. Morfin, N., Goodwin, P. H., Correa-Benitez, A., Guzman-Novoa, E. Sublethal exposure to clothianidin during the larval stage causes long-term impairment of hygienic and foraging behaviours of honey bees. Apidologie. 50 (5), 595-605 (2019).
  16. Colin, T., Meikle, W. G., Wu, X., Barron, A. B. Traces of a neonicotinoid induce precocious foraging and reduce foraging performance in honey bees. Environmental Science & Technology. 53 (14), 8252-8261 (2019).
  17. Liao, L. H., Wu, W. Y., Berenbaum, M. R. Behavioral responses of honey bees (Apis mellifera) to natural and synthetic xenobiotics in food. Scientific Reports. 7 (1), 1-8 (2017).
  18. Kessler, S. C., et al. Bees prefer foods containing neonicotinoid pesticides. Nature. 521 (7550), 74-76 (2015).
  19. Metcalf, R. L., Luckmann, W. H. . Introduction to Insect Pest Management. , (1994).
  20. Duncan, J. Post-treatment effects of sublethal doses of dieldrin on the mosquito Aedes aegypti L. Annals of Applied Biology. 52 (1), 1-6 (1963).
  21. Haynes, K. F. Sublethal effects of neurotoxic insecticides on insect behavior. Annual Review of Entomology. 33 (1), 149-168 (1988).
  22. James, D. G., Price, T. S. Fecundity in twospotted spider mite (Acari: Tetranychidae) is increased by direct and systemic exposure to imidacloprid. Journal of Economic Entomology. 95 (4), 729-732 (2002).
  23. Hodjat, S. H. Effects of sublethal doses of insecticides and of diet and crowding on Dysdercus fasciatus Sign. (Hem., Pyrrhocoridae). Bulletin of Entomological Research. 60 (3), 367-378 (1971).
  24. Feng, W. B., Bong, L. J., Dai, S. M., Neoh, K. B. Effect of imidacloprid exposure on life history traits in the agricultural generalist predator Paederus beetle: Lack of fitness cost but strong hormetic effect and skewed sex ratio. Ecotoxicology and Environmental Safety. 174, 390-400 (2019).
  25. Milchreit, K., Ruhnke, H., Wegener, J., Bienefeld, K. Effects of an insect growth regulator and a solvent on honeybee (Apis mellifera L.) brood development and queen viability. Ecotoxicology. 25 (3), 530-537 (2016).
  26. Haarmann, T., Spivak, M., Weaver, D., Weaver, B., Glenn, T. Effects of fluvalinate and coumaphos on queen honey bees (Hymenoptera: Apidae) in two commercial queen rearing operations. Journal of Economic Entomology. 95 (1), 28-35 (2002).
  27. Pettis, J. S., Collins, A. M., Wilbanks, R., Feldlaufer, M. F. Effects of coumaphos on queen rearing in the honey bee, Apis mellifera. Apidologie. 35 (6), 605-610 (2004).
  28. Thompson, H. M., Wilkins, S., Battersby, A. H., Waite, R. J., Wilkinson, D. The effects of four insect growth-regulating (IGR) insecticides on honeybee (Apis mellifera L.) colony development, queen rearing and drone sperm production. Ecotoxicology. 14 (7), 757-769 (2005).
  29. Wu-Smart, J., Spivak, M. Sub-lethal effects of dietary neonicotinoid insecticide exposure on honey bee queen fecundity and colony development. Scientific Reports. 6 (1), 1-11 (2016).
  30. Chen, Y. W., Wu, P. S., Yang, E. C., Nai, Y. S., Huang, Z. Y. The impact of pyriproxyfen on the development of honey bee (Apis mellifera L.) colony in field. Journal of Asia-Pacific Entomology. 19 (3), 589-594 (2016).
  31. Fine, J. D., Mullin, C. A., Frazier, M. T., Reynolds, R. D. Field residues and effects of the insect growth regulator novaluron and its major co-formulant n-methyl-2-pyrrolidone on honey bee reproduction and development. Journal of Economic Entomology. 110 (5), 1993-2001 (2017).
  32. Fine, J. D., et al. Quantifying the effects of pollen nutrition on honey bee queen egg laying with a new laboratory system. PLoS ONE. 13 (9), 0203444 (2018).
  33. Fine, J. D. Evaluation and comparison of the effects of three insect growth regulators on honey bee queen oviposition and egg eclosion. Ecotoxicology and Environmental Safety. 205, 111142 (2020).
  34. The Colony and Its Organization. MAAREC – Mid Atlantic Apiculture Research & Extension Consortium Available from: https://agdev.anr.udel.edu/maarec/honey-bee-biology/the-colony-and-its-organization/ (2020)
  35. Winston, M. L. . The biology of the honey bee. , (1991).
  36. Mullins, J. W. Pest control with enhanced environmental safety. Imidacloprid. 524, 183-198 (1993).
  37. Sur, R., Stork, A. Uptake, translocation and metabolism of imidacloprid in plants. Bulletin of Insectology. 56 (1), 35-40 (2003).
  38. Dively, G. P., Kamel, A. Insecticide residues in pollen and nectar of a cucurbit crop and their potential exposure to pollinators. Journal of Agricultural and Food Chemistry. 60 (18), 4449-4456 (2012).
  39. Goulson, D. Review: An overview of the environmental risks posed by neonicotinoid insecticides. Journal of Applied Ecology. , 977-987 (2014).
  40. Krischik, V., Rogers, M., Gupta, G., Varshney, A. Soil-applied imidacloprid translocates to ornamental flowers and reduces survival of adult Coleomegilla maculata, Harmonia axyridis, and Hippodamia convergens lady beetles, and larval Danaus plexippus and Vanessa cardui butterflies. PLoS ONE. 10 (3), (2015).
  41. Prisco, G. D., et al. Neonicotinoid clothianidin adversely affects insect immunity and promotes replication of a viral pathogen in honey bees. Proceedings of the National Academy of Sciences. 110 (46), 18466-18471 (2013).
  42. Dively, G. P., Embrey, M. S., Kamel, A., Hawthorne, D. J., Pettis, J. S. Assessment of chronic sublethal effects of imidacloprid on honey bee colony health. PLoS ONE. 10 (3), 01118748 (2015).
  43. Sandrock, C., Tanadini, M., Tanadini, L. G., Fauser-Misslin, A., Potts, S. G., Neumann, P. Impact of chronic neonicotinoid exposure on honeybee colony performance and queen supersedure. PLoS ONE. 9 (8), 103592 (2014).
  44. Brodschneider, R., Riessberger-Gallé, U., Crailsheim, K. Flight performance of artificially reared honeybees (Apis mellifera). Apidologie. 40 (4), 441-449 (2009).
  45. Harrison, J. M. Caste-specific changes in honeybee flight capacity. Physiological Zoology. 59 (2), 175-187 (1986).
  46. Mackensen, O. Effect of carbon dioxide on initial oviposition of artificially inseminated and virgin queen bees. Journal of Economic Entomology. 40 (3), 344-349 (1947).
  47. OECD. . OECD Test No. 245: Honey bee (Apis Mellifera L.), chronic oral toxicity test (10-Day Feeding), OECD guidelines for the testing of chemicals, section 2. , (2017).
  48. . ECOTOX Home Available from: https://cfpub.epa.gov/ecotox/ (2020)
  49. Collins, A. M. Variation in time of egg hatch by the honey bee, Apis mellifera (Hymenoptera: Apidae). Annals of the Entomological Society of America. 97 (1), 140-146 (2004).
  50. Santomauro, G., Engels, W. Sexing of newly hatched live larvae of the honey bee, Apis mellifera, allows the recognition of diploid drones. Apidologie. 33 (3), 283-288 (2002).
  51. Tang, W., Hu, Z., Muallem, H., Gulley, M. L. Quality assurance of RNA expression profiling in clinical laboratories. The Journal of Molecular Diagnostics JMD. 14 (1), 1-11 (2012).
  52. Henry, M., et al. Reconciling laboratory and field assessments of neonicotinoid toxicity to honeybees. Proceedings of the Royal Society B: Biological Sciences. 282 (1819), (2015).
  53. Singaravelan, N., Nee’man, G., Inbar, M., Izhaki, I. Feeding responses of free-flying honeybees to secondary compounds mimicking floral nectars. Journal of Chemical Ecology. 31 (12), 2791-2804 (2005).
  54. Brown, L. A., Ihara, M., Buckingham, S. D., Matsuda, K., Sattelle, D. B. Neonicotinoid insecticides display partial and super agonist actions on native insect nicotinic acetylcholine receptors. Journal of Neurochemistry. 99 (2), 608-615 (2006).
  55. Dupuis, J. P., Gauthier, M., Raymond-Delpech, V. Expression patterns of nicotinic subunits α2, α7, α8, and β1 affect the kinetics and pharmacology of ACh-induced currents in adult bee olfactory neuropiles. Journal of Neurophysiology. 106 (4), 1604-1613 (2011).
  56. Crailsheim, K., et al. Pollen consumption and utilization in worker honeybees (Apis mellifera carnica): Dependence on individual age and function. Journal of Insect Physiology. 38 (6), 409-419 (1992).
  57. . The Merck Index Online – chemicals, drugs and biologicals Available from: https://www.rsc.org/merck-index (2020)
  58. Trostanetsky, A., Kostyukovsky, M. Note: Transovarial activity of the chitin synthesis inhibitor novaluron on egg hatch and subsequent development of larvae of Tribolium castaneum. Phytoparasitica. 36 (1), 38-41 (2008).
  59. Medina, P., Smagghe, G., Budia, F., del Estal, P., Tirry, L., Viñuela, E. Significance of penetration, excretion, and transovarial uptake to toxicity of three insect growth regulators in predatory lacewing adults. Archives of Insect Biochemistry and Physiology. 51 (2), 91-101 (2002).
  60. Kim, S. H. S., Wise, J. C., Gökçe, A., Whalon, M. E. Novaluron causes reduced egg hatch after treating adult codling moths, Cydia pomenella: Support for transovarial transfer. Journal of Insect Science. 11, (2011).
  61. Joseph, S. V. Transovarial effects of insect growth regulators on Stephanitis pyrioides (Hemiptera: Tingidae). Pest Management Science. 75 (8), 2182-2187 (2019).
  62. Tasei, J. N. Effects of insect growth regulators on honey bees and non-Apis bees. A review. Apidologie. 32 (6), 527-545 (2001).
  63. Haydak, M. H. Honey Bee Nutrition. Annual Review of Entomology. 15 (1), 143-156 (1970).
  64. Böhme, F., Bischoff, G., Zebitz, C. P. W., Rosenkranz, P., Wallner, K. From field to food-will pesticide-contaminated pollen diet lead to a contamination of royal jelly. Apidologie. 49 (1), 112-119 (2018).
check_url/de/62316?article_type=t

Play Video

Diesen Artikel zitieren
Fine, J. D., Torres, K. M., Martin, J., Robinson, G. E. Assessing Agrochemical Risk to Mated Honey Bee Queens. J. Vis. Exp. (169), e62316, doi:10.3791/62316 (2021).

View Video