Summary

使用无细胞细菌提取物、脂质体和乳液转移制备蛋白质生成合成细胞

Published: April 27, 2020
doi:

Summary

该协议描述了用于自下而上制备RNA和产生合成细胞的蛋白质的方法、材料、设备和步骤。合成细胞的内水腔含有S30细菌裂解,封装在脂质双层层(即稳定脂质体)内,使用油水乳液转移方法。

Abstract

合成细胞构造的自下而上装配方法是隔离和研究细胞模拟环境中细胞过程的有效工具。此外,无细胞表达系统的发展已经证明了以受控方式重组蛋白质生产、转录和翻译过程(DNA+RNA+蛋白质)的能力,利用合成生物学。在这里,我们描述了一种制备无细胞表达系统的协议,包括生产一种有效的细菌水合物,并将这种水泡封装在富含胆固醇的脂质型巨型单层囊泡(GUVs)(即稳定脂质体)内,以形成合成细胞。该协议描述了合成细胞成分的准备方法,包括活性细菌裂解物的产生,然后根据油水乳液转移方法对合成细胞进行详细的逐步制备。这些有助于以简单和负担得起的方式生产数百万个合成细胞,具有用于生产不同类型的蛋白质的高多功能性。所得合成细胞可用于研究分离环境中的蛋白质/RNA的产生和活性,在定向进化中,以及作为在体内按需生产治疗蛋白的受控药物输送平台。

Introduction

合成细胞是类似细胞的人造粒子,模仿活细胞的一个或多个功能,如分裂、形成膜相互作用和根据遗传代码11、2、32,3合成蛋白质的能力。包含无细胞蛋白合成(CFPS)系统的合成细胞具有很高的模块化,因为它们能够在DNA模板发生改变后产生各种蛋白质和RNA序列。CFPS系统以细胞裂解、纯化成分或合成成分为基础,提供一种有吸引力的替代蛋白,包括蛋白质合成所需的所有转录和翻译机制,如核糖体、RNA聚合酶、氨基酸和能量源(例如,三磷甘油酸盐和三磷酸腺)4、5、6、7、8、9。4,5,6,7,8,9将CFPS系统封装在脂质囊泡内,无需依赖活细胞10即可简单高效地生产蛋白质。此外,该平台允许合成可能在自然细胞内降解的肽,产生对活细胞有毒的蛋白质,以及用非天然氨基酸11,12,12修饰蛋白质。合成细胞已被作为研究目的的模型,研究从进化角度1,13,13实现细胞寿命所需的最小细胞成分。合成细胞也被用来建立和实施遗传回路,并作为定向进化的模型14,15,16。15,1614其他研究的重点是合成细胞模仿自然细胞生物活动的能力,旨在取代受损的自然细胞,如糖尿病患者的β细胞此外,这些CFPS封装合成细胞产生各种治疗性蛋白质的能力说明了其潜力,被纳入临床使用18。

在这里,我们描述了一个自下而上的实验室规模协议(图1),用于生产基于CFPS系统封装在脂质囊泡中的RNA和产生蛋白质的合成细胞。这表明,合成细胞平台作为新型药物输送系统,用于在体内生产治疗性蛋白质药物的可能性。以前的研究已经研究了CFPS反应和细胞水合制剂过程44,8,208,20的优化。此外,还应用了几种细胞大小的脂质体制备技术,如微流体和聚合物基液滴稳定方法21、22、23,,22,在脂质体脂质组成24、25、2625,26中也有所不同2423在所介绍的协议中,合成细胞采用水浸液转移法产生,封装过程在低温(<4°C)5、10、24、27、285,10,24,27,28下进行。这些温和的条件被发现有利于保持分子机械的生物功能完整性,即核糖体和蛋白质27,29,30。27,29,30颗粒的脂质组成由胆固醇和1-棕榈-2-奥莱基-sn-糖-3-磷脂素(POPC)组成。第一种存在于所有哺乳动物细胞膜中,对膜的稳定性、刚度和渗透性降低至关重要,后者模仿哺乳动物磷脂成分11、13。11,细胞转录和转化分子机械从BL21(DE3)大肠杆菌(大肠杆菌)菌株中提取,该菌株由pAR1219质粒过度表达T7RNA聚合酶转化,以增加CFPS效力和蛋白质合成。该系统已用于产生诊断和治疗蛋白,31体外体内19的分子量高达66kDa。以下协议为合成细胞系统的生产提供了一种简单而有效的方法,可以解决与自然界中蛋白质合成相关的广泛基本问题,也可用于药物输送应用。

Protocol

注:图1中介绍了完整的合成细胞生产协议的图示。根据用户的需求,协议的蛋白质表达(第3.2节)和合成细胞形成(第4节)部分也可以独立进行(进行一些调整)。 1. 制备S30-T7莱沙 条纹板大肠杆菌BL21(DE3)细菌转化与T7RNA聚合酶表达pAR1219质粒在LB-agar板补充50微克/mL安培霉素,以获得单菌落。 准备启动溶液:将单个菌体接种成5 mL…

Representative Results

我们提出了一种合成细胞制备协议,通过封装基于BL21大肠杆菌体内脂质囊泡的S30-T7 CFPS系统。图 2中介绍了准备过程的原理图描述,其中包括每个阶段的图像。合成细胞制备过程的成功取决于每个阶段的适当性能,并受不同参数的影响。应调整协议以适应特定蛋白质的产生。 在CFPS散量反应和合成细胞中,将表达模型蛋白超级文件夹绿色荧光蛋白?…

Discussion

该协议引入了一种简单且经济的方法,用于生产大量产生蛋白质的合成细胞。活性细胞的产生取决于谨慎和准确地执行协议,并侧重于几个关键步骤。在该方法的精致部分,在细胞水致之前达到适当的细菌密度,在细菌水致酶中达到足够数量的蛋白质至关重要。其次,在4°C下进行流化过程,用液氮快速冷冻液化酶,以保持蛋白质活性。此外,在该协议中,我们使用大肠杆菌BL21(DE3)细胞?…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

这项工作得到了ERC-STG-2015-680242的支持。

作者还承认技术综合癌症中心(TICC)的支持;罗素浆果纳米技术研究所;罗瑞一·洛基生命科学与工程跨学科中心;以色列经济部为卡明赠款(52752);以色列科学技术和空间部首席科学家办公室(3-11878);以色列科学基金会(1778/13,1421/17);以色列癌症协会(2015-0116);德国-以色列科学研究与发展基金会为GIF青年赠款(I-2328-1139.10/2012);欧洲联盟FP-7职业一体化赠款IRG方案(908049);磷脂研究中心赠款;罗森布拉特癌症研究基金会,马拉特家庭基金会赠款;和昂格家庭基金会施罗德承认阿隆和陶布奖学金。O. Adir承认谢尔曼和古特维尔斯奖学金。陈承认谢尔曼奖学金。克林斯基感谢罗斯柴尔德·凯撒利亚基金会的阿丽亚娜·德罗斯柴尔德夫人博士计划。

Materials

A. Reagents required for step 1 (S30-T7 lysate preparation)
E.coli BL21 (DE3)  NEB C2527 E.coli BL21 (DE3).
pAR1219 Sigma T2076 TargeTron vector for transformation.
Stock solution of 50 mg/mL Ampicillin Sigma A9518 Stored at -20 °C.
10 g/L Bacto-tryptone BD Bioscience  211705 For preparation of Luria Bertani (LB) agar (1.5%) plate.
10 g/L Sodium chloride (NaCl) Bio-Lab 19030591
5 g/L Bacto-Yeast extract BD Bioscience  212750
15 g/L Agar agar purified Merck 1.01614.5007
50 µg/mL Ampicillin Sigma A9518
10 g/L Bacto-tryptone BD Bioscience  211705 For preparation of Luria Bertani (LB) media (20 mL).
10 g/L Sodium chloride (NaCl) Bio-Lab 19030591
5 g/L Bacto-Yeast extract BD Bioscience  212750
50 µg/mL Ampicillin Sigma A9518
12 g/L Bacto-tryptone BD Bioscience  211705 For preparation of Terrific Broth (TB) media (1 L).
24 g/L Bacto-Yeast extract BD Bioscience  212750
4% (v/v) Glycerol anhydrous Bio-Lab 7120501
2.32 g/L K2HPO4 Spectrum chemical P1383
12.54 g/L KH2PO4 Spectrum chemical P1380
 50 µg/mL Ampicillin Sigma A9518
Stock solution of 100 mM Isopropyl β-D-1-thiogalactopyranoside (IPTG)  INALCO INA-1758-1400 Filtered using 0.2 µm hydrophilic PVDF syringe filter.
Stock solution of 0.1 M dithiothreitol (DTT)  TCI D1071 Filtered using 0.2 µm hydrophilic PVDF syringe filter.
10 mM Tris-acetate at pH = 7.4 Sigma T1503 S30 lysate buffer (1.5 L)
14 mM magnesium acetate Merck 1.05819.0250
60 mM potassium acetate Carlo Erba 470147
1 mM DTT TCI D1071
0.5 mL/L 2-mercaptoethanol Sigma M6250
Equipment required for step 1
100 mL sterilized Erlenmeyer flasks Thermo Scientific 50-154-2846 2 flasks
2 L sterilized Erlenmeyer flasks with baffles KIMAX-KIMBLE 25630 2 flasks
Floor incubator shaker MRC TOU-120-2 Laboratory shaker incubator 450x450mm, 400rpm, 70 °C
Centrifuge Thermo Scientific 75004270 (75003340) – Fiberlite F10-6 x 100 LEX Fixed-Angle Rotor.
Should enable at least 13,000 x g.     * Pre-cooled to 4 °C.
High pressure homogenizer AVESTIN EmulsiFlex-C3 Pre-cooled to 4 °C.
-80oC freezer SO-LOW U85-18
Sterilized 1.5 mL plastic tubes Eppendorf 30120086 Preferably pre-cooled to -20 °C.
Spectrophotometer TECAN IN-MNANO Infinite M200 pro
96-well transparent plate Thermo Scientific 167008
Sterilized graduated cylinder Corning
Sterilized centrifuge tubes Eppendorf 30120086 Preferably pre-cooled to -20 °C.
Sterilized pipette tips Corning Preferably pre-cooled to -20 °C.
Crushed ice bucket Bel-Art M18848-4001
Small liquid nitrogen tank NALGENE 4150-4000
B. Reagents required for step 3 (lipids in oil solution preparation):
1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) Lipoid 556400 Powder
Cholesterol Sigma C8667 Powder
Chloroform Bio-Lab 3082301
Mineral oil Sigma M5904 Light oil
Equipment required for step 2
Vortex mixer Scientific industries SI-0256
Heating block TECHNE FDB03AD Pre-heated to 80 °C.
Should enable controlled temperature. 
2 mL screw neck glass vials CSI Analytical Innovations VT009M-1232 For a larger scale, use 50 mL falcons and evaporate the chloroform using rotary evaporator.
9mm Screw Cap CSI Analytical Innovations C395R-09LC
C. Reagents required for step 3 (inner and feeding reaction mixtures):
HEPES Spectrum H1089 1 M HEPES-KOH (pH = 8) – pH buffer
Potassium hydroxide (KOH) Frutarom 55290
1 M Magnesium acetate Merck 1.05819.0250 Co-factor and negative charge stabilizor.
1 M Potassium acetate Carlo Erba 470147 Negative charge stabilizor.
5.2 M Ammonium acetate Merck 1.01116.1000 Stabilizes negative charge.
50% (w/v) Polyethylene glycol 6000 (PEG) Merck 8.07491.1000 Increases the concentration of the macromolecules.
0.5 M 3-phosphoglycerate (3-PGA) Sigma P8877 Secondary energy source.
50 mM Amino acids mixture I Sigma LAA21-1KT Amino acids additive.
Contains: 50 mM of each of the following 17  natural amino acids – alanine, arginine, asparagine, aspartic acid, cysteine, glutamine, glutamic acid, glycine, histidine, isoleucine, leucine, lysine, methionine, proline, serine, threonine, and valine.
50 mM Amino acids mixture II Sigma LAA21-1KT Amino acids additive.
Contains: 50 mM of each of the following 3 natural amino acids – tryptophan, phenylalanine, and tyrosine.
100 mM Adenine triphosphate (ATP) Sigma A3377 Nucleotides & energy source.
50 mM Guanidine triphosphate (GTP) Sigma G8877 Nucleotides & energy source.
100 mM Uridine triphosphate (UTP) ACROS ORGANICS 226310010 Nucleotides additive.
100 mM Isopropyl β-D-1-thiogalactopyranoside (IPTG) INALCO INA-1758-1400 Genes expression induction.
2 M Sucrose J.T. Baker 1933078 Generating a density gradient.
2 M Glucose Sigma 16301 Generating a density gradient.
H2O UltraPure Water (UPW) Bio-Lab 2321777500 DNase & RNase free
S30-T7 lysate _ _ Prepared at step 1.                                                                        Source of transcription & translation components.
Store at -80 °c, thaw on crashed ice just before usage. 
Stock of DNA plasmid of choice _ _ Contains the sequence for the requested protein.
Under T7 promotor
D. Equipment required for step 4 (synthetic cells preparation)
Floor incubator shaker or Thermomixer MRC TOU-120-2 Laboratory shaker incubator 450x450mm, 400rpm, 70 °C
PHMT Grant Bio  PSC18 Thermomixer
Centrifuge Thermo Scientific 75004270 (75003629) – TX-400 4 x 400mL Swinging Bucket Rotor.
Suited for 15 mL sized tubes.
Preferably swinging buckets.
Should enable at least 1000 x g.
Pre-cooled to 4 °C.
Table centrifuge Thermo Scientific 75002420 (75003424) – 24 x 1.5/2.0mL rotor with ClickSeal.
Suited for Eppendorf vials.
Pre-cooled to 4 °C.
Vortex mixer Scientific industries SI-0256
Crushed ice bucket Bel-Art M18848-4001
2 mL screw neck glass vials CSI Analytical Innovations VT009M-1232
Sterile 15 mL plastic tubes Thermo Scientific 339651
Sterilized 1.5 mL plastic tubes Eppendorf 30120086
Sterilized pipette tips Corning Sterilized by autoclave.

Referencias

  1. Blain, J. C., Szostak, J. W. Progress toward synthetic cells. Annual review of biochemistry. 83, 615-640 (2014).
  2. Richmond, D. L., et al. Forming giant vesicles with controlled membrane composition, asymmetry, and contents. Proceedings of the National Academy of Sciences. 108 (23), 9431-9436 (2011).
  3. Deshpande, S., Spoelstra, W. K., van Doorn, M., Kerssemakers, J., Dekker, C. Mechanical division of cell-sized liposomes. ACS Nano. 12 (3), 2560-2568 (2018).
  4. Liu, D. V., Zawada, J. F., Swartz, J. R. Streamlining Escherichia coli S30 extract preparation for economical cell-free protein synthesis. Biotechnology Progress. 21 (2), 460-465 (2005).
  5. Stano, P. Gene Expression Inside Liposomes: From Early Studies to Current Protocols. Chemistry-A European Journal. , (2019).
  6. Lewandowski, B., et al. Sequence-specific peptide synthesis by an artificial small-molecule machine. Science. 339 (6116), 189-193 (2013).
  7. Li, J., et al. Cogenerating synthetic parts toward a self-replicating system. ACS Synthetic Biology. 6 (7), 1327-1336 (2017).
  8. Kim, T. W., et al. An economical and highly productive cell-free protein synthesis system utilizing fructose-1,6-bisphosphate as an energy source. Journal of Biotechnology. 130 (4), 389-393 (2007).
  9. Kim, T. W., et al. Simple procedures for the construction of a robust and cost-effective cell-free protein synthesis system. Journal of Biotechnology. 126 (4), 554-561 (2006).
  10. Noireaux, V., Libchaber, A. A vesicle bioreactor as a step toward an artificial cell assembly. Proceedings of the National Academy of Sciences. 101 (51), 17669-17674 (2004).
  11. He, M., He, Y., Luo, Q., Wang, M. From DNA to protein: No living cells required. Process Biochemistry. 46 (3), 615-620 (2011).
  12. Casteleijn, M. G., Urtti, A., Sarkhel, S. Expression without boundaries: cell-free protein synthesis in pharmaceutical research. International Journal of Pharmaceutics. 440 (1), 39-47 (2013).
  13. Luisi, P. L., Ferri, F., Stano, P. Approaches to semi-synthetic minimal cells: a review. Naturwissenschaften. 93 (1), 1-13 (2006).
  14. Adamala, K. P., Martin-Alarcon, D. A., Guthrie-Honea, K. R., Boyden, E. S. Engineering genetic circuit interactions within and between synthetic minimal cells. Nature Chemistry. 9 (5), 431-439 (2017).
  15. Ding, Y., Contreras-Llano, L. E., Morris, E., Mao, M., Tan, C. Minimizing Context Dependency of Gene Networks Using Artificial Cells. ACS Applied Materials & Interfaces. 10 (36), 30137-30146 (2018).
  16. Arnold, F. H. Design by directed evolution. Accounts of Chemical Research. 31 (3), 125-131 (1998).
  17. Chen, Z., et al. Synthetic beta cells for fusion-mediated dynamic insulin secretion. Nature Chemical Biology. 14 (1), 86-93 (2018).
  18. Mohr, B. P., Retterer, S. T., Doktycz, M. J. While-you-wait proteins? Producing biomolecules at the point of need. Expert Review of Proteomics. 13 (8), 707-709 (2016).
  19. Krinsky, N., et al. Synthetic Cells Synthesize Therapeutic Proteins inside Tumors. Advanced Healthcare Materials. 7 (9), 1701163 (2018).
  20. Kim, T. W., Kim, D. M., Choi, C. Y. Rapid production of milligram quantities of proteins in a batch cell-free protein synthesis system. Journal of Biotechnology. 124 (2), 373-380 (2006).
  21. Deng, N. N., Yelleswarapu, M., Zheng, L., Huck, W. T. Microfluidic assembly of monodisperse vesosomes as artificial cell models. Journal of the American Chemical Society. 139 (2), 587-590 (2016).
  22. Deshpande, S., Caspi, Y., Meijering, A. E., Dekker, C. Octanol-assisted liposome assembly on chip. Nature Communications. 7, 10447 (2016).
  23. Göpfrich, K., et al. One-Pot Assembly of Complex Giant Unilamellar Vesicle-Based Synthetic Cells. ACS synthetic biology. , (2019).
  24. Fujii, S., et al. Liposome display for in vitro selection and evolution of membrane proteins. Nature Protocols. 9 (7), 1578 (2014).
  25. Periasamy, A., et al. Cell-free protein synthesis of membrane (1,3)-beta-d-glucan (curdlan) synthase: co-translational insertion in liposomes and reconstitution in nanodiscs. Biochim Biophys Acta. 1828 (2), 743-757 (2013).
  26. Kalmbach, R., et al. Functional cell-free synthesis of a seven helix membrane protein: in situ insertion of bacteriorhodopsin into liposomes. Journal of Molecular Biology. 371 (3), 639-648 (2007).
  27. Nishimura, K., et al. Cell-free protein synthesis inside giant unilamellar vesicles analyzed by flow cytometry. Langmuir. 28 (22), 8426-8432 (2012).
  28. Rampioni, G., et al. Synthetic cells produce a quorum sensing chemical signal perceived by Pseudomonas aeruginosa. Chemical Communications. 54 (17), 2090-2093 (2018).
  29. Stano, P., Kuruma, Y., de Souza, T. P., Luisi, P. L. . Biosynthesis of proteins inside liposomes. , 127-145 (2010).
  30. Pautot, S., Frisken, B. J., Weitz, D. A. Production of unilamellar vesicles using an inverted emulsion. Langmuir. 19 (7), 2870-2879 (2003).
  31. Krinsky, N., et al. A Simple and Rapid Method for Preparing a Cell-Free Bacterial Lysate for Protein Synthesis. PLoS One. 11 (10), 0165137 (2016).
  32. Pédelacq, J. D., Cabantous, S., Tran, T., Terwilliger, T. C., Waldo, G. S. Engineering and characterization of a superfolder green fluorescent protein. Nature Biotechnology. 24 (1), 79 (2006).
  33. Osawa, M., Erickson, H. P. Liposome division by a simple bacterial division machinery. Proceedings of the National Academy of Sciences. 110 (27), 11000-11004 (2013).
  34. Merkle, D., Kahya, N., Schwille, P. Reconstitution and anchoring of cytoskeleton inside giant unilamellar vesicles. ChemBioChem. 9 (16), 2673-2681 (2008).
  35. Vleugel, M., Roth, S., Groenendijk, C. F., Dogterom, M. Reconstitution of basic mitotic spindles in spherical emulsion droplets. Journal of Visualized Experiments. , e54278 (2016).
  36. Bayoumi, M., Bayley, H., Maglia, G., Sapra, K. T. Multi-compartment encapsulation of communicating droplets and droplet networks in hydrogel as a model for artificial cells. Scientific Reports. 7, 45167 (2017).
  37. Carlson, E. D., Gan, R., Hodgman, C. E., Jewett, M. C. Cell-free protein synthesis: applications come of age. Biotechnology Advances. 30 (5), 1185-1194 (2012).

Play Video

Citar este artículo
Adir, O., Sharf-Pauker, N., Chen, G., Kaduri, M., Krinsky, N., Shainsky-Roitman, J., Shklover, J., Schroeder, A. Preparing Protein Producing Synthetic Cells using Cell Free Bacterial Extracts, Liposomes and Emulsion Transfer. J. Vis. Exp. (158), e60829, doi:10.3791/60829 (2020).

View Video