Summary

Cartografía de la difusión molecular en la membrana plasmática de objetivos múltiples de Búsquedas (MTT)

Published: May 27, 2012
doi:

Summary

Objetivos múltiples de seguimiento es un algoritmo desarrollado para el seguimiento de fabricación casera individualmente moléculas marcadas dentro de la membrana plasmática de las células vivas. De manera eficiente la detección, la estimación y el seguimiento de las moléculas a través del tiempo en la alta densidad proporcionan un fácil de usar, herramienta completa para investigar la dinámica de la membrana a nanoescala.

Abstract

Nuestro objetivo es obtener una descripción completa de los procesos moleculares que ocurren en las membranas celulares de diferentes funciones biológicas. Nuestro objetivo es la caracterización de la organización compleja y dinámica de la membrana plasmática en una sola molécula de nivel, mediante el desarrollo de herramientas analíticas dedicadas a una sola partícula de seguimiento (SPT) en alta densidad: Múltiples-Objetivo de Búsquedas (MTT) 1. Una sola molécula de videomicroscopía, ofreciendo milisegundos y resolución nanométrica 1-11, permite una representación detallada de la organización de la membrana 12-14 con precisión la cartografía descriptores tales como la localización de los receptores de la célula, la movilidad, el parto o interacciones.

Volvimos a visitar el SPT, tanto a nivel experimental y algorítmicamente. Aspectos experimentales incluyeron la optimización de la configuración y el etiquetado de células, con un énfasis particular en alcanzar la densidad de etiquetado más alto posible, a fin de proporcionar una instantánea dinámica de una dinámica moleculars que se produce dentro de la membrana. Problemas algorítmicos en cuestión cada paso utilizado para la reconstrucción de las trayectorias: la detección de picos, la estimación y la reconexión, se dirigió a las herramientas específicas de análisis de imagen 15,16. Implementación de la deflación después de la detección permite que los picos rescate oculto inicialmente por los picos vecinos, más fuertes. Es de destacar que la mejora de la detección de un impacto directo en la reconexión, por la reducción de las diferencias dentro de las trayectorias. Las presentaciones han sido evaluadas utilizando simulaciones de Monte Carlo para la densidad de etiquetado diferentes y los valores de ruido, que normalmente representan las dos principales limitaciones de las mediciones paralelas con una resolución espacial y temporal de alta.

La precisión nanométrica 17 obtenido por moléculas individuales, usando ya sea sucesiva de encendido / apagado óptica photoswitching o no lineal, puede entregar observaciones exhaustivas. Esta es la base de los métodos de Nanoscopia 17 como TORMENTA 18, PALM 19,20, 21 o RESOLFT STED 22,23, WHICH menudo pueden requerir muestras de imágenes fijas. La tarea principal es la detección y estimación de los escasos picos de difracción que emanan de una sola molécula. Por lo tanto, proporcionar las hipótesis adecuadas, tales como el manejo de una precisión de posicionamiento constante en lugar del movimiento browniano, el MTT es francamente adecuado para el análisis de nanoscópicos. Además, MTT fundamentalmente se puede utilizar en cualquier escala: no sólo para las moléculas, sino también para las células o animales, por ejemplo. Por lo tanto, MTT es un algoritmo de seguimiento de gran alcance que tiene aplicaciones a escala molecular y celular.

Protocol

En este video, se presenta un solo experimento completo rastreo de partículas, utilizando los puntos cuánticos dirigidos a un receptor de membrana específico. El objetivo principal de este experimento consiste en la discriminación de los diferentes tipos de comportamientos de la difusión molecular de medición dentro de la membrana plasmática de las células vivas. En efecto, los movimientos moleculares que surgen en la membrana típicamente puede desviarse de difusión browniano al ser linealmente dirigido o conf…

Discussion

En una sola partícula de seguimiento, junto a los aspectos celulares y microscopía, el análisis representa una parte sustancial de la obra. Esto se dirige el algoritmo utilizado para realizar las tres tareas principales: la detección, la estimación y volver a conectar picos de más de cada fotograma. Pero el aspecto consecuente de este trabajo reside en la elaboración del propio algoritmo, que puede ser necesario adaptar a cualquier nueva investigación dedicada, fundamentalmente por los últimos pasos, extra (com…

Divulgations

The authors have nothing to disclose.

Acknowledgements

Damos las gracias a los miembros de nuestro equipo, sobre todo Blache MC para la asistencia técnica, así como M Irla y Imhof B, por su apoyo y fructíferos debates. Las cifras de la deflación y el confinamiento reproducido por cortesía de Nature Methods. Este proyecto es apoyado por becas institucionales del CNRS, el INSERM y la Universidad de Marsella, y por ayudas económicas de la región de Provenza-Alpes-Costa Azul, Instituto Nacional del Cáncer, la Agence Nationale de la Recherche (ANR-08-PCVI- 0034-02, la ANR 2010 BLAN 1214 01) y Fondation pour la Recherche Médicale (Equipe labélisée FRM-2009). VR con el apoyo de una beca de la Ligue Nationale Contre le Cancer.

Materials

Reagent Company Catalogue number Quantity
Cos-7 cell line ATCC CRL-1651 5,000 cells/well
HBSS without Ca2+ GIBCO 14175 1 ml
0.05% Trypsin EDTA GIBCO 25300 1 ml
8-well Lab-tek NUNC 155441 1
QDot-605 streptavidin Invitrogen Q10101MP 20 mM
Biotinylated Fab (for Fab synthesis, see reference 21)
Fab from mAb 108 ATCC HB-9764 200 μg
NHS-Biotin Thermo Scientific 21435 18.5 μg
Complete medium
DMEM GIBCO 41965 500 ml
Fetal Bovine Serum SIGMA F7524 50 ml
L-Glutamine GIBCO 25030 5 ml
HEPES GIBCO 15630 5 ml
Sodium Pyruvate GIBCO 11360 5 ml
Imaging medium
HBSS with Ca2+ GIBCO 14025 25 ml
HEPES GIBCO 15630 250 μl

 

Equipment Company Reference
Inverted microscope Nikon Eclipse TE2000U
Fluorescent lamp Nikon Intensilight C-HGFIE
1.3 NA 100x objective Nikon Plan Fluor 1.30
1.49 NA 100x objective Nikon APO TIRF 1.49
Camera Roper Scientific Cascade 512 B
Thermostated box Life Imaging Services The Box

Appendix: example Script of MTT supplementary analysis

function MTT_example(file_name)
%%% Basic examples showing how to recover MTT output results
%%% to plot each trace and to build the histogram
%%% of fluorescence intensities

if nargin<1 % no file_name provided?
    files = dir(‘*.stk’);
    if isempty(files), disp(‘no data in current dir’), return, end
    file_name = files(1).name; % default: first stk file
    disp([‘using’ file_name ‘by default’])
end

file_param = [file_name ‘_tab_param.dat’]; % output file

%% Load data
cd(‘output23′) % or (‘output22’), according to version used
% Disclaimer: version 2.2 only generates 7 parameters,
% an extra parameter, noise, was added in version 2.3

% To read all parameters at once, in a single table
% tab_param = fread_all_param(file_param);
% tab_i = tab_param(2:8:end, :); tab_j = …

% To read all parameters (except frame_number) in separate tables
% [tab_i,tab_j,tab_alpha,tab_radius,tab_offset,tab_blk,tab_noise] = fread_all_data_spt(file_param);

tab_i = fread_data_spt(file_param, 3); % index is 3 because trace number & frame number, non informative, are discarded!
tab_j= fread_data_spt(file_param, 4);
tab_alpha = fread_data_spt(file_param, 5);
tab_blk = fread_data_spt(file_param, 8);

%% Loop over traces
N_traces = size(tab_i,1);
% Tables are N_traces lines by N_frames colums

for itrc = 1:N_traces
    No_blk_index = tab_blk(itrc, :)>0; % non blinking steps only
     plot(tab_i(itrc, No_blk_index), tab_j(itrc, No_blk_index))
    xlabel(‘i (pixel)’), ylabel(‘j (pixel)’)
    title([‘trace # ‘ num2str(itrc)])
    disp(‘Please strike any key for next trace’), pause
end

%% Fluo histogram
N_datapoints = sum(tab_blk(:)>0); % non blinking steps only
hist(tab_alpha(tab_blk>0),2*sqrt(N_datapoints)) % using 2sqrt(N) bins
xlabel(‘intensity (a.u.)’), ylabel(‘occurrence’)
title(‘histogram of particles fluorescence intensity’)

References

  1. Serge, A., Bertaux, N., Rigneault, H., Marguet, D. Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes. Nat. Methods. 5, 687-694 (2008).
  2. Schmidt, T., Schutz, G. J., Baumgartner, W., Gruber, H. J., Schindler, H. Imaging of single molecule diffusion. Proc. Natl. Acad. Sci. U S A. 93, 2926-2929 (1996).
  3. Lommerse, P. H. Single-molecule imaging of the H-ras membrane-anchor reveals domains in the cytoplasmic leaflet of the cell membrane. Biophys. J. 86, 609-616 (2004).
  4. Marguet, D., Lenne, P. F., Rigneault, H., He, H. T. Dynamics in the plasma membrane: how to combine fluidity and order. EMBO. J. 25, 3446-3457 (2006).
  5. Saxton, M. J., Jacobson, K. Single-particle tracking: applications to membrane dynamics. Annu. Rev. Biophys. Biomol. Struct. 26, 373-399 (1997).
  6. Dahan, M. Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science. 302, 442-445 (2003).
  7. Harms, G. S. Single-molecule imaging of l-type Ca(2+) channels in live cells. Biophys. J. 81, 2639-2646 (2001).
  8. Iino, R., Koyama, I., Kusumi, A. Single molecule imaging of green fluorescent proteins in living cells: E-cadherin forms oligomers on the free cell surface. Biophys. J. 80, 2667-2677 (2001).
  9. Sako, Y., Minoghchi, S., Yanagida, T. Single-molecule imaging of EGFR signalling on the surface of living cells. Nat. Cell Biol. 2, 168-172 (2000).
  10. Schutz, G. J., Kada, G., Pastushenko, V. P., Schindler, H. Properties of lipid microdomains in a muscle cell membrane visualized by single molecule microscopy. Embo. J. 19, 892-901 (2000).
  11. Seisenberger, G. Real-time single-molecule imaging of the infection pathway of an adeno-associated virus. Science. 294, 1929-1932 (2001).
  12. Jacobson, K., Sheets, E. D., Simson, R. Revisiting the fluid mosaic model of membranes. Science. 268, 1441-1442 (1995).
  13. Saffman, P. G., Delbruck, M. Brownian motion in biological membranes. Proc. Natl. Acad. Sci. U S A. 72, 3111-3113 (1975).
  14. Singer, S. J., Nicolson, G. L. The fluid mosaic model of the structure of cell membranes. Science. 175, 720-731 (1972).
  15. Papoulis, A. . Probability, Random Variables and Stochastic Process 277. , (2001).
  16. Van Trees, H. L. . Detection, Estimation, and Modulation Theory, Wiley Inter-Science. , (1968).
  17. Moerner, W. E. Single-molecule mountains yield nanoscale cell images. Nat. Methods. 3, 781-782 (2006).
  18. Rust, M. J., Bates, M., Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods. 3, 793-795 (2006).
  19. Betzig, E. Imaging intracellular fluorescent proteins at nanometer resolution. Science. 313, 1642-1645 (2006).
  20. Manley, S. High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nat. Methods. 5, 155-157 (2008).
  21. Andrew, S. M. Enzymatic digestion of monoclonal antibodies. Methods Mol. Med. 40, 325-331 (2000).
  22. Hell, S. W., Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780-782 (1994).
  23. Klar, T. A., Hell, S. W. Subdiffraction resolution in far-field fluorescence microscopy. Opt. Lett. 24, 954-956 (1999).
  24. Meilhac, N., Guyader, L. L. e., Salome, L., Destainville, N. Detection of confinement and jumps in single-molecule membrane trajectories. Phys. Rev. E. Stat. Nonlin. Soft. Matter Phys. 73, 011915 (2006).
  25. Saxton, M. J. Single-particle tracking: effects of corrals. Biophys. J. 69, 389-398 (1995).
  26. Serge, A., Fourgeaud, L., Hemar, A., Choquet, D. Receptor activation and homer differentially control the lateral mobility of metabotropic glutamate receptor 5 in the neuronal membrane. J. Neurosci. 22, 3910-3920 (2002).
  27. Simson, R., Sheets, E. D., Jacobson, K. Detection of temporary lateral confinement of membrane proteins using single-particle tracking analysis. Biophys. J. 69, 989-993 (1995).
  28. Jacobson, K., Dietrich, C. Looking at lipid rafts. Trends Cell Biol. 9, 87-91 (1999).
  29. Kusumi, A., Sako, Y., Yamamoto, M. Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells. Biophys. J. 65, 2021-2040 (1993).
  30. Livneh, E. Large deletions in the cytoplasmic kinase domain of the epidermal growth factor receptor do not affect its laternal mobility. J. Cell Biol. 103, 327-331 (1986).
  31. Medintz, I. L., Uyeda, H. T., Goldman, E. R., Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and. 4, 435-446 (2005).
  32. Wu, X., Bruchez, M. P. Labeling cellular targets with semiconductor quantum dot conjugates. Methods Cell Biol. 75, 171-183 (2004).
  33. Mohammadi, M. Aggregation-induced activation of the epidermal growth factor receptor protein tyrosine kinase. Biochimie. 32, 8742-8748 (1993).
  34. Howarth, M. Monovalent, reduced-size quantum dots for imaging receptors on living cells. Nat. Methods. 5, 397-399 (2008).
  35. Bertaux, N., Marguet, D., Rigneault, H., Sergé, A. Multiple-target tracing (MTT) algorithm probes molecular dynamics at cell surface. Protocol Exchange. , (1038).
  36. Groc, L. Surface trafficking of neurotransmitter receptor: comparison between single-molecule/quantum dot strategies. The Journal of neuroscience : the official journal of the Society for Neuroscience. 27, 12433-12437 (2007).
  37. Cui, B. One at a time, live tracking of NGF axonal transport using quantum dots. Proceedings of the National Academy of Sciences of the United States of America. 104, 13666-13671 (2007).
  38. He, H. T., Marguet, D. Detecting nanodomains in living cell membrane by fluorescence correlation spectroscopy. Annu. Rev. Phys. Chem. 62, 417-436 (2011).
  39. Cebecauer, M., Spitaler, M., Serge, A., Magee, A. I. Signalling complexes and clusters: functional advantages and methodological hurdles. J. Cell. Sci. 123, 309-320 (2010).
  40. Kao, H. P., Verkman, A. S. Tracking of single fluorescent particles in three dimensions: use of cylindrical optics to encode particle position. Biophys. J. 67, 1291-1300 (1994).
check_url/fr/3599?article_type=t

Play Video

Citer Cet Article
Rouger, V., Bertaux, N., Trombik, T., Mailfert, S., Billaudeau, C., Marguet, D., Sergé, A. Mapping Molecular Diffusion in the Plasma Membrane by Multiple-Target Tracing (MTT). J. Vis. Exp. (63), e3599, doi:10.3791/3599 (2012).

View Video