Summary

Monitoreo de la homeostasis del calcio del retículo endoplasmático Usando una<em> Gaussia</em> Luciferasa SERCaMP

Published: September 06, 2015
doi:

Summary

Endoplasmic reticulum calcium homeostasis is disrupted in diverse pathologies. A secreted ER calcium monitoring protein (SERCaMP) reporter can be used to detect disruptions in the ER calcium store. This protocol describes the use of a Gaussia luciferase SERCaMP to examine ER calcium homeostasis in vitro and in vivo.

Abstract

El retículo endoplasmático (ER) contiene el mayor nivel de calcio intracelular, con concentraciones aproximadamente 5000 veces mayor que los niveles citoplasmáticos. El control estricto sobre el calcio ER es imprescindible para el plegamiento de proteínas, la modificación y la trata. Las perturbaciones a ER de calcio pueden dar lugar a la activación de la respuesta de la proteína desplegada, un mecanismo de respuesta de estrés ER de tres patas, y contribuir a la patogénesis de una variedad de enfermedades. La capacidad de monitorear alteraciones de calcio ER durante el inicio de la enfermedad y la progresión es importante en principio, pero difícil en la práctica. Los métodos actualmente disponibles para el monitoreo de calcio ER, tales como tintes y proteínas fluorescentes dependientes de calcio, han proporcionado información sobre la dinámica del calcio ER en las células, sin embargo estas herramientas no son muy adecuados para estudios in vivo. Nuestro laboratorio ha demostrado que una modificación en el carboxi-terminal de la luciferasa Gaussia confiere la secreción del reportero en respuesta aEl agotamiento de calcio ER. Los métodos para utilizar una luciferasa basado, proteína de monitoreo de calcio ER secretada (SERCaMP) para in vitro e in aplicaciones in vivo se describen en el presente documento. Este vídeo destaca inyecciones hepáticas, la manipulación farmacológica de Gluc-SERCaMP, extracción de sangre y el procesamiento y los parámetros de ensayo para el control longitudinal de calcio ER.

Introduction

Las funciones en muchas capacidades celulares incluyendo plegamiento de proteínas, la secreción de proteínas, homeostasis de los lípidos, y de señalización intracelular 1 retículo endoplasmático (ER). Central a la función normal ER es mantener las concentraciones de calcio luminal a ~ 5.000 veces mayores que se encuentran en el citoplasma 2-4. Este proceso intensivo de energía está regulado por la ATPasa de calcio Sarco / retículo endoplásmico (SERCA), una bomba que mueve iones de calcio en la sala de emergencias. Flujo de calcio desde el ER está mediada principalmente por la rianodina (RyR) e inositol trifosfato (IP3R) receptores. Debido a que muchos procesos ER son dependientes de calcio, lo que altera la tienda puede conducir a estrés ER y la muerte celular eventual.

ER desregulación de calcio se ha observado en enfermedades como la cardiopatía, la diabetes, el Alzheimer y el Parkinson 5. Debido a la naturaleza progresiva de estas enfermedades, ha sido un reto para delinear la causa-efecto relación entre patogénesis y alteraciones en la tienda de calcio ER. Varias tecnologías han permitido importantes avances en nuestra comprensión de la dinámica del calcio ER, incluyendo colorantes e indicadores de calcio codificados genéticamente (Gecis). Baja afinidad colorantes de calcio, que aumentan en la fluorescencia cuando se une a Ca 2+, se pueden cargar en las células para examinar compartimentos subcelulares con altas concentraciones de calcio 6. Gecis, tales como D1ER y el receptor permite la monitorización de las fluctuaciones de calcio con un control más preciso de la localización subcelular 7-9. Recientemente, otra clase de Gecis llama indicadores de proteínas de orgánulos atrapado en calcio de medición (CEPIA) se han descrito 10. Un tercer enfoque que combina la genética y la química pequeña molécula es-esterasa específica colorante de carga (TED), que utiliza una carboxilesterasa codificado genéticamente (dirigido a la ER) con un colorante de calcio a base de éster 11.

Mientras que el AFORenfoques ementioned tienen fortalezas y debilidades inherentes, pueden proporcionar información valiosa sobre la dinámica del calcio ER a través de mediciones agudos de fluorescencia. Ellos son, sin embargo, no es óptimo para los estudios longitudinales a menudo necesarias para investigar la progresión de la enfermedad. Con el objetivo de diseñar un método para controlar la dinámica del calcio durante períodos prolongados de tiempo, hemos identificado y desarrollado una modificación de proteínas para crear las proteínas secretadas calcio ER monitoreo (SERCaMPs) 12.

SERCaMP sortea varias limitaciones asociadas con otras metodologías, proporcionando un método mínimamente invasivo para interrogar en varias ocasiones el almacén de calcio ER. Hemos demostrado anteriormente que la ASARTDL péptido carboxi-terminal (alanina-serina-alanina-arginina-treonina-ácido aspártico-leucina) es suficiente para promover la retención de ER; Sin embargo, bajo condiciones que causan disminuciones en calcio ER, la secuencia del péptido ya no es capaz de retener localizatio ERn y la proteína es secretada 13. La base de la tecnología SERCaMP es el apéndice de ASARTDL a la carboxi-terminal de una proteína secretada (por ejemplo, luciferasa Gaussia, o gluc) de modo que la secreción es provocada por el agotamiento de calcio ER, creando así un reportero robusta de ER disregulación de calcio 12. La expresión de Gluc-SERCaMP a través de métodos transgénicos permite fluidos biológicos incluyendo medio de cultivo celular y plasma a analizar los cambios en la actividad gluc como un indicador de la homeostasis del calcio ER. El método tiene aplicaciones para el estudio longitudinal de alteraciones progresivas en la tienda de calcio ER tanto in vitro como in vivo. El siguiente protocolo se escribe como un esquema general para el uso de SERCaMP basado en gluc para estudiar la homeostasis del calcio ER, pero el protocolo puede servir como una guía para SERCaMPs informadores alternativos.

Protocol

1. Ensayo in vitro: Detectando SERCaMP de lanzamiento de una línea celular estable SH-SY5Y Placa SH-SY5Y-Gluc-ASARTDL (SERCaMP) en placas de cultivo de tejidos tratados en 150.000 células por cm 2 de superficie. Para placas de 96 pocillos, por ejemplo, semilla de 50.000 células por pocillo (Figura 1a). Crecer células SH-SY5Y en DMEM (glucosa alta, GlutaMAX, piruvato) + crecimiento bovino 10% de suero + 1x penicilina / estreptomicina. Células Passage hasta 15 …

Representative Results

El método Gluc-SERCaMP permite la evaluación de la homeostasis del calcio ER mediante el muestreo de fluidos extracelulares. Varios controles pueden ser incluidas en el diseño experimental para mejorar la interpretación de los resultados. En primer lugar, el uso de un reportero constitutivamente secretada (por ejemplo, gluc sin la ASARTDL C-terminal o "Gluc-No Tag") se puede emplear para evaluar los efectos de los tratamientos experimentales en la vía secretora (secreción celular global) y la ex…

Discussion

Este protocolo pone de relieve la in vitro e in vivo de utilidad Gluc-SERCaMP para supervisar el agotamiento de calcio ER. Aunque la modificación de proteínas para generar SERCaMP parece generalizarse a otras proteínas reportero 12, elegimos Gaussia luciferasa por su robusta (200-1.000 mayor veces) bioluminiscencia en comparación con otras luciferasas 18. Demostramos detectable inducida thapsigargin de liberación Gluc-SERCaMP a través de un rango de dosis de 100 veces de vir…

Divulgations

The authors have nothing to disclose.

Acknowledgements

This work was supported by the Intramural Research Program at the National Institute on Drug Abuse. We thank Doug Howard, Chris Richie, Lowella Fortuno, and Josh Hinkle for their contributions to developing this method.

Materials

1.5mL tubes Fisher  02-682-550
10% NP-40 solution  Pierce 28324 for intracellular GLuc assays
1mL luer-lok syringes Fisher 14-823-30
200uL filter tips Rainin RT-L200F
3-0 surgical sutures Fisher NC9598192
30g needles Fisher Scientific 14-821-13A 
Adhesive microplate sealing sheets Thermo AB-0558
Alcohol prep pads Fisher 22-246-073
Anesthesia Auto Flow System E-Z Anesthesia EZ-AF9000
Animal recovery chamber Lyon Vet ICU-912-004
B27 supplement Life Technologies 17504-044
Betadine solution Fisher NC9386574
Bleach Clorox n/a
Bovine growth serum Thermo SH30541.03
Coelenterazine, Native Regis Technologies 1-361204-200
Cotton tipped applicators Puritan 806-WC
Cutting needles 3/8 circle sutures WPI 501803
Digital ultrasconic cleaner Fisher Scientific FS60D
DMEM high glucose, GlutaMAX, pyruvate Life Technologies 10569-010
DNA mass ladder Life Technologies 10496-016
Gaussia luciferase (recombinant protein) Nanolight 321-100
Gaussia luciferase antibody (for WB, ICC, or IHC) New England Biolabs E8023S 1:2000 (WB)
Germinator 500 CellPoint Scientific DS-401
Gluc assay plates (96 well, opaque) Fisher 07-200-589
Hank's balanced salt solution Life Technologies 14175-095
Heparin Allmedtech 63323-276-02
Isoflurane Butler Schein 29404
Ketamine Henry Schein 995-2949
Kwik Stop Styptic powder Butler Schein 5867
L-glutamine Sigma G8540
Methanol Fisher a452-4
Microfuge 22R Centrifuge Bekman Colter 368831
Neosporin Fisher 19-898-143
Neurobasal medium Life Technologies 21103049
Nikon Stereoscope Nikon SMZ745T
Nucleospin Gel and PCR Cleanup Machery-Nagel 740609
P200 pipet Rainin L-200XLS+
p24 Lenti-X rapid titer kit Clontech 632200
PCR film seal Fisher AB0558
Penicillin/streptomycin Life Technologies 15140-122
Protease inhibitor cocktail Sigma P8340
ReFresh Charcoal Filter canister E-Z Anesthesia EZ-258
Scalpel blades, #10 Fine Science tools Inc 10010-00
SD rats 150-200g Charles River Rats rats ordered at 150-200g.  Surgery 5 days after arrival
Small animal ear tags National Band and Tag co 1005-1
Sterile surgical drapes Braintree Scientific SP-MPS
Synergy 2 plate reader BioTek n/a
TaqMan Universal PCR Master Mix Applied Biosystems 4304437
Thapsigargin Sigma T9033 harmful to human health
Virapower lentiviral packaging mix Life Technologies K4975-00
Xfect Transfection reagent Clontech 631318
Xylazine Valley Vet 468RX

References

  1. Sitia, R., Braakman, I. Quality control in the endoplasmic reticulum protein factory. Nature. 426 (6968), 891-894 (2003).
  2. Burdakov, D., Petersen, O. H., Verkhratsky, A. Intraluminal calcium as a primary regulator of endoplasmic reticulum function. Cell Calcium. 38 (3-4), 303-310 (2005).
  3. Fu, S., et al. Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity. Nature. 473 (7348), 528-531 (2011).
  4. Micaroni, M. The role of calcium in intracellular trafficking. Curr Mol Med. 10 (8), 763-773 (2010).
  5. Mekahli, D., Bultynck, G., Parys, J. B., De Smedt, H., Missiaen, L. Endoplasmic-reticulum calcium depletion and disease. Cold Spring Harb Perspect Biol. 3 (6), (2011).
  6. Paredes, R. M., Etzler, J. C., Watts, L. T., Zheng, W., Lechleiter, J. D. Chemical calcium indicators. Methods. 46 (3), 143-151 (2008).
  7. Whitaker, M. Genetically encoded probes for measurement of intracellular calcium. Methods Cell Biol. 99, 153-182 (2010).
  8. Tang, S., et al. Design and application of a class of sensors to monitor Ca2+ dynamics in high Ca2+ concentration cellular compartments. Proc Natl Acad Sci U S A. 108 (39), 16265-16270 (2011).
  9. Palmer, A. E., Jin, C., Reed, J. C., Tsien, R. Y. Bcl-2-mediated alterations in endoplasmic reticulum Ca2+ analyzed with an improved genetically encoded fluorescent sensor. Proc Natl Acad Sci U S A. 101 (50), 17404-17409 (2004).
  10. Suzuki, J., et al. Imaging intraorganellar Ca2+ at subcellular resolution using CEPIA. Nat Commun. 5, 4153 (2014).
  11. Rehberg, M., Lepier, A., Solchenberger, B., Osten, P., Blum, R. A new non-disruptive strategy to target calcium indicator dyes to the endoplasmic reticulum. Cell Calcium. 44 (4), 386-399 (2008).
  12. Henderson, M. J., Wires, E. S., Trychta, K. A., Richie, C. T., Harvey, B. K. SERCaMP: a carboxy-terminal protein modification that enables monitoring of ER calcium homeostasis. Mol Biol Cell. 25 (18), 2828-2839 (2014).
  13. Henderson, M. J., Richie, C. T., Airavaara, M., Wang, Y., Harvey, B. K. Mesencephalic astrocyte-derived neurotrophic factor (MANF) secretion and cell surface binding are modulated by KDEL receptors. J Biol Chem. 288 (6), 4209-4225 (2013).
  14. Shipman, C. Evaluation of 4-(2-hydroxyethyl)-1-piperazineëthanesulfonic acid (HEPES) as a tissue culture buffer. Proc Soc Exp Biol Med. 130 (1), 305-310 (1969).
  15. Zigler, J. S., Lepe-Zuniga, J. L., Vistica, B., Gery, I. Analysis of the cytotoxic effects of light-exposed HEPES-containing culture medium. In Vitro Cell Dev Biol. 21 (5), 282-287 (1985).
  16. Howard, D. B., Powers, K., Wang, Y., Harvey, B. K. Tropism and toxicity of adeno-associated viral vector serotypes 1, 2, 5, 6, 7, 8, and 9 in rat neurons and glia in vitro. Virology. 372 (1), 24-34 (2008).
  17. Smeets, E. F., Heemskerk, J. W., Comfurius, P., Bevers, E. M., Zwaal, R. F. Thapsigargin amplifies the platelet procoagulant response caused by thrombin. Thromb Haemost. 70 (6), 1024-1029 (1993).
  18. Tannous, B. A. Gaussia luciferase reporter assay for monitoring biological processes in culture and in vivo. Nat Protoc. 4 (4), 582-591 (2009).
  19. Sobrevals, L., et al. AAV vectors transduce hepatocytes in vivo as efficiently in cirrhotic as in healthy rat livers. Gene Ther. 19 (4), 411-417 (2012).
  20. Wang, Z., et al. Rapid and highly efficient transduction by double-stranded adeno-associated virus vectors in vitro and in vivo. Gene Ther. 10 (26), 2105-2111 (2003).
  21. Seppen, J., et al. Adeno-associated virus vector serotypes mediate sustained correction of bilirubin UDP glucuronosyltransferase deficiency in rats. Mol Ther. 13 (6), 1085-1092 (2006).
  22. Hareendran, S., et al. Adeno-associated virus (AAV) vectors in gene therapy: immune challenges and strategies to circumvent them. Rev Med Virol. 23 (6), 399-413 (2013).

Play Video

Citer Cet Article
Henderson, M. J., Wires, E. S., Trychta, K. A., Yan, X., Harvey, B. K. Monitoring Endoplasmic Reticulum Calcium Homeostasis Using a Gaussia Luciferase SERCaMP. J. Vis. Exp. (103), e53199, doi:10.3791/53199 (2015).

View Video