Summary

在常规免疫细胞化学鉴定无血清条件下人类iPS细胞的小规模的传播

Published: February 18, 2017
doi:

Summary

Regular characterization of induced pluripotent stem cells (iPSCs), to ascertain maintenance of their pluripotent state, is an important step before these cells are used for other applications. Here we describe a method for the small-scale propagation of human iPSCs specifically designed to enable their easy and routine characterization via immunocytochemistry.

Abstract

There is great interest in utilizing human induced pluripotent stem cells (hiPSCs) for disease modeling and cell therapeutics due to their patient specificity and characteristic stemness. However, the pluripotency of iPSCs, which is essential to their functionality, must be confirmed before these cells can be used in such applications. While a rigorous characterization of iPSCs, through different cellular and functional assays is necessary to establish their pluripotency, routine assessment of pluripotency maintenance can be achieved more simply and effectively through immunocytochemical techniques. Here, we present a systematic protocol for culturing hiPSCs, in a scaled-down manner, to particularly facilitate the verification of their pluripotent state using immunocytochemistry. More specifically, this methodology encompasses an efficient and cost-effective means of growing iPSCs in serum-free conditions and plating them on small chamber slides or glass coverslips ideal for immunocytochemistry.

Introduction

重新编程人成年体细胞到诱导多能干细胞(iPS细胞)提供了一种方法,以获得患者特异性的细胞的潜在无限供给到研究疾病1,2。扼要体外的疾病表型将使得可信检验与疾病相关的细胞和分子机制,增强药物发现和个性化药物3。此外,人iPS细胞(iPS细胞)提供导出其可以用作唯一的资源来替换死亡或功能失调的细胞,并在几个障碍4的范围内恢复功能的特定细胞类型的可能性。

以使用上述应用程序的iPSC的重要前提是,确保在培养膨胀过程中他们的多能性和分化状态被维持。通常情况下,techniq的UE,如流式细胞术,Western印迹,聚合酶链反应和功能分析,这需要大量的细胞和专用设备,用于IPSC的多能性6,7,8,9,10的详细的分析。然而,iPS细胞“未分化状态的常规评估可能有效地通过这些细胞的有限传播专门为免疫细胞化学(ICC)来实现,因此,涉及减少时间和资源。

最新进展允许的iPSC的所限定的无血清条件下生长的,它是在需要的鼠成纤维细胞饲养层和含血清介质常规培养系统一个显著改善。然而,目前的文献不包括描述如何尽快过渡馈线iPSCs的逐步明确协议层到无饲养系统。

在此背景下,本协议系统详细说明了如何生长在辐照的小鼠胚胎成纤维细胞人iPS细胞(IMEF)饲养层可以是(1),适于在无血清培养基中传播,和(2)在小规模培养的特别支持稳健免疫细胞化学分析。总体而言,这种方法代表了用于传播在无血清条件人类iPS细胞用于确认使用免疫细胞化学在常规基础上它们的多能及时和成本有效的方法。

Protocol

人iPS细胞是从从4毫米皮肤钻取活组织检查分离并通过仙台病毒介导的重编程11在内部重新编程的人真皮成纤维细胞衍生的。亚利桑那州的机构审查委员会的批准大学为对象招募和活检集合中的所有程序。 1. IPSC的文化细胞外基质表面涂层的制备 hiPSC文化上的iMEFs日益合流前一天,准备外基质(基质胶)涂层板。 缓慢解冻的细胞外基质的?…

Representative Results

这个协议提供的iPSCs的人类如何可以从饲养层转移至无饲养条件下,并随后传播以有限的方式来具体实现,用于确认多能性维持成本效益的免疫细胞化学的逐步描述。 图1显示了该协议的示意图。 图2A示出hiPSC菌落在6孔板的iMEFs生长。这些殖民地表现出有确定的边界和密相明亮的中心典型形态。 如图2B所示,在12孔板的iPSC移交后馈线-自…

Discussion

这里介绍的系统协议提供了一个节省时间和成本效益的方法,在一个按比例缩小的培养技术的形式,专门通过免疫组化来支持有效的多能性的分析。

是所描述的方法的主要优点如下。需要传统上超过3至4个通道,以过渡从饲养层的iPSC馈线-自由培养条件,以消除使用散装解离技术后剩余的残余的iMEFs和典型单层形态出现12,13。与此相?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

Funding Sources: The University of Arizona, The Jim Himelic Foundation, and the Arizona Center for the Biology of Complex Diseases.

Materials

DMEM-F12/HEPES Life Technologies 11330032
Knockout Serum Replacement Life Technologies 10828028
L-Glutamine Life Technologies 25030081
MEM-NEAA Life Technologies 11140050
2-mercaptoethanol Life Technologies 21985023
Recombinant Human FGF-Basic Cell Sciences CRF001B
Y-27632 ROCK Inhibitor R&D 1254
Collagenase Type IV Life Technologies 17104019
Matrigel hESC-qualified Matrix Corning 354277
mTeSR1 Basal Medium StemCell Technologies 05850
mTeSR1 5X Supplement StemCell Technologies 05850
Gentle Cell Dissociation Buffer StemCell Technologies 07174
0.1M PO4 Buffer In-House n/a
Paraformaldeyde, prill Electron Microscopy Sciences 19202
1X Phoshate Buffered Saline n/a n/a
Normal Goat Serum Life Technologies 16210072
Bovine Serum Albumin Sigma-Aldrich A2153
Triton-X-100 Sigma-Aldrich X100
Oct-4A (C30A3) Rabbit mAb,
Sox2 (D6D9) Rabbit mAb,
SSEA4 (MC813) Mouse mAb,
TRA-1-60(S) (TRA-1-60(S)) Mouse mAb
Cell Signaling
Cell Signaling
Cell Signaling
Cell Signaling
2840
3579
4755
4746
Alternatively, a combination of 6 pluripotency primary antibodies can be purchased together as a kit in Catalog #9656
Goat anti-Ms IgM Alexa Fluor 488 Life Technologies A21042
Goat anti-Ms IgG3 Alexa Fluor 488 Life Technologies A21151
Goat anti-Rb IgG Alexa Fluor 594 Life Technologies A11037
Multiwell Cell Culture Plates Fisher Scientific  0720080/0720081 Available in 6, 12, 24, 48, 96 well sizes
Chamber Slides Fisher Scientific  12 565 21 Available in Glass or Permanox Plastic in 1, 2, 4, 8, 16 well sizes
Coverglass for growth Fisher Scientific  12 545 82 Available in 12, 15, 18, 22 and 25mm sizes

References

  1. Takahashi, K., Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 126, 663-676 (2006).
  2. Park, I. H., et al. Disease-specific induced pluripotent stem cells. Cell. 134, 877-886 (2008).
  3. Hallett, P. J., et al. Successful function of autologous iPSC-derived dopamine neurons following transplantation in a non-human primate model of Parkinson’s disease. Cell stem cell. 16, 269-274 (2015).
  4. Haston, K. M., Finkbeiner, S. Clinical Trials in a Dish: The Potential of Pluripotent Stem Cells to Develop Therapies for Neurodegenerative Diseases. Annu rev pharm toxicol. 56, 489-510 (2016).
  5. Zhang, L., et al. Derivation and high engraftment of patient-specific cardiomyocyte sheet using induced pluripotent stem cells generated from adult cardiac fibroblast. Circ heart fail. 8, 156-166 (2015).
  6. Byrne, J. A., Nguyen, H. N., Reijo Pera, R. A. Enhanced generation of induced pluripotent stem cells from a subpopulation of human fibroblasts. PloS one. 4, 7118 (2009).
  7. Sivapatham, R., Zeng, X. Generation and Characterization of Patient-Specific Induced Pluripotent Stem Cell for Disease Modeling. Methods mol bio. 1353, 25-44 (2016).
  8. Park, I. H., et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature. 451, 141-146 (2008).
  9. Ruff, D., Lieu, P. T. Profiling stem cells using quantitative PCR protein assays. Methods mol bio. 997, 225-236 (2013).
  10. Pripuzova, N. S., et al. Development of a protein marker panel for characterization of human induced pluripotent stem cells (hiPSCs) using global quantitative proteome analysis. Stem cell res. 14, 323-338 (2015).
  11. Fusaki, N., Ban, H., Nishiyama, A., Saeki, K., Hasegawa, M. Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc jpn acad ser B phys biol sci. 85, 348-362 (2009).
  12. Bigdeli, N., et al. Adaptation of human embryonic stem cells to feeder-free and matrix-free culture conditions directly on plastic surfaces. J Biotechnol. 133, 146-153 (2008).
  13. Stover, A. E., Schwartz, P. H. Adaptation of human pluripotent stem cells to feeder-free conditions in chemically defined medium with enzymatic single-cell passaging. Methods mol bio. 767, 137-146 (2011).

Play Video

Citer Cet Article
Corenblum, M. J., Madhavan, L. Small-scale Propagation of Human iPSCs in Serum-free Conditions for Routine Immunocytochemical Characterization. J. Vis. Exp. (120), e55260, doi:10.3791/55260 (2017).

View Video