Summary

氟 TrFE 导管内许旺细胞移植桥断大鼠脊髓残肢促进轴突再生跨越间隙

Published: November 03, 2017
doi:

Summary

本文介绍了一项技术, 插入一个中空导管之间的脊髓残肢完全横断面和填充雪旺细胞 (SCs) 和可注射基底膜基质, 以桥梁和促进轴突再生跨越的差距。

Abstract

在大鼠脊髓损伤的各种模型中, 钝挫伤模型是最常用的, 因为它是最常见的类型的人脊髓损伤。完整的横断面模型, 虽然与钝挫伤模型没有临床相关性, 但却是评价轴突再生最严格的方法。在钝挫伤模型中, 由于存在残余的组织损伤, 很难区分再生与发芽或幸免的轴突。在完整的横断面模型中, 需要一个桥接方法来填补间隙, 并从侧到尾端以建立连续性, 以评估治疗效果。一个可靠的搭桥手术是必要的测试结果的措施, 减少因手术方法的变异性。此处所述的协议用于在移植前制备雪旺细胞 (scs) 和导管, 在胸椎8级 (T8) 上完全横断脊髓, 插入导管, 并将 SCs 移植到导管中。这种方法也使用原位胶凝剂基底膜基质与 SC 移植, 允许改善轴突生长横跨侧和骶管接口与宿主组织。

Introduction

脊髓损伤修复是一个复杂而富有挑战性的问题, 需要一个组合治疗策略, 例如, 使用细胞和生物材料为移植细胞功能和轴突提供有利的微环境损伤部位再生。 1,2,3,4,,5,6,7,8 和完全横断9 ,11,12,131415161718 202122模型经常用于评估 biomaterial-based 桥接疗法的效果。使用半模型的优点是它为桥接结构提供了更稳定的比完全横断面。然而, 在半模型中, 由于无组织的存在, 很难证明轴突再生是应用治疗方法的结果。完全横断面模型是显示轴突再生的最严格的方法。

各种天然和合成材料已被研究用于注射凝胶, 预先凝胶放置在挫伤或半模型, 或作为一个结构的管道到半或完整的横断面模型 (详细的审查23,24,25).原位可注射基质/sc 合剂的凝胶性在移植物和轴突交叉的主绳之间创建一个更宽松的接口26,27与 pre-gelled 基质/sc 种植体相比5,18,19,28.原位胶凝允许矩阵在不规则的主机接口周围进行轮廓, 而更刚性和结构化的导管或较不模压的预先凝胶不能。与注射基质相比, 结构化导管通常提供接触引导和植入稳定性。这里介绍的协议描述了一个手术过程, 既利用了可注射基底膜基质的优势 (例如,基质, 参见材料表,称为可注射基质), 以及结构化管道评价轴突再生的最严格的脊髓损伤模型。

纺聚 vinylidenedifluoride-乙烯 (PVDF-TrFE) 对齐的纤维空心导管用于我们的实验方法。PVDF-TrFE 是一种压电聚合物, 它在机械变形时产生瞬态电荷, 并被证明可以促进突起扩展和轴突再生,无论是体外2930还是在体内31. 静电纺丝是一种常用的脚手架制作方法, 可以使用各种可控性能的聚合物快速生成可靠的纤维支架, 如纤维对齐、纤维直径和脚手架的厚度神经和其他应用程序32,33,34

大量研究大鼠 SCs 移植到脊髓损伤部位已显示治疗效果5,9,18,19,20,,21 ,26。这些移植是神经保护的组织周围的病变, 减少病变腔大小, 并促进轴突再生到病变/移植部位和鞘再生轴突。人体 SCs 可以 autologously 移植, 比其他大多数神经相关细胞24的优势。经外周神经活检, SCs 可以分离和纯化, 并将激增到预期的数量, 移植到人类。自体 SC 移植治疗脊髓损伤患者已被证明是安全的在伊朗35,36,37,38, 中国39,40, 以及美国41,42。众所周知, SCs 分泌大量的神经营养因子和胞外基质蛋白对轴突生长起重要作用, 并在周围神经损伤后的轴突再生中起着必不可少的功能。我们的目标是描述一种方法, 可以研究导管设计, 以改善大鼠脊髓横断模型中 SC 移植的结果。

Protocol

根据 NIH 和美国农业部的指导原则, 女性成年休鼠 (180-200 和 #160; g 体重) 被安置。迈阿密大学机构动物保育和使用委员会 (IACUC) 批准了所有的动物程序. 1. 移植前准备 导管准备。 在解剖显微镜下使用 #10 刀片将管道长度削减到5毫米. 注: 导管内径介于 2.4-2.7 毫米之间;外径介于 2.5-2.8 mm 之间. 沿纵向侧轻轻折叠导管 ( 图 1A…

Representative Results

使用这种手术技术的目的是评估使用的结构导管和注射基质, 最大限度地发挥 SC 功能后移植到完成断脊髓。移植后三周, 动物被灌入4% 甲醛, 脊柱被严重解剖, 并固定在同一定影液中, 用于另24小时。然后解剖脊髓, 将低温矢状切面的样品放入30% 蔗糖溶液中冻。从另一组解剖脊髓的 SC 桥中间分离出来的1毫米厚的横断面被放进戊二醛固定剂中, 用于塑料切片。样品被服从于电?…

Discussion

建立有效的横断面模型的最关键的一步是在一个或两个切口切断脊髓。2-2. 5 毫米之间的间隙之间的侧和尾部脊髓残肢应存在于横断现场。三最可能的原因, 这样的差距没有出现的是 (1) 背部/腹根没有被正确删除, (2) 腹侧硬脑膜没有被充分删除, 和/或 (3) 该动物没有正确放置在她下面的轧辊。

在树桩之间进行有效的导管插入: (1) 导管的直径应根据实验中所用动物的特定种类和年…

Divulgations

The authors have nothing to disclose.

Acknowledgements

我们要感谢在迈阿密项目的病毒载体和动物核心, 以治疗瘫痪的生产 lenti-GFP 病毒和提供动物护理, 分别和组织学和成像核心的使用低温, 共焦显微镜,荧光显微镜与立体侦探。资金由一 (09923), 国防部 (W81XWH-14-1-0482) 和 NSF (DMR-1006510) 提供。鹰是克里斯汀·林恩杰出的神经科学教授。

Materials

Cryogenic vials ThermoFisher Scientific 5000-0020
10 cm Petri dish VWR 25382-428
Dulbecco's modified Eagle's medium: nutrient mixture F-12 ThermoFisher Scientific 11039-021 "DMEM/F12" in protocol.
Penicillin-streptomycin ThermoFisher Scientific 15140-122 "Pen/Strep" in protcol.
Fetal bovine serum Hyclone SH300-70-03 "FBS" in protocol.
Pituitary extract Biomedical Technologies BT-215
Forskolin Sigma-Aldrich F6886
Heregulin R&D Systems 396-HB/CF
Poly L-lysine Sigma-Aldrich P2636 "PLL" in protocol.
Dulbecco's modified Eagle's medium ThermoFisher Scientific 11965-092 "DMEM" in protocol.
Hank's balanced salt solution ThermoFisher Scientific 14170-112 "HBSS" in protocol.
Tryspin-EDTA ThermoFisher Scientific 15400-054
Female Fischer rat (160-180g) Envigo
Vannas scissor, straight FST 15018-10
Ketamine Vedco Inc 5098976106 100 mg/ml
Xylazine Lloyd Inc AnaSed 20 mg/ml
Gentamycin APP Pharmaceuticals NDC 63323-010-02 Can be any brand of choice.
Micro Spatula FST 10089-11 Can be any brand of choice.
Curved scissors with blunt end FST 14017-18 Can be any brand of choice.
Blunt forceps FST 11006-12 Can be any brand of choice.
rongeur FST 16121-14 Can be any brand of choice.
Angled spring scissors FST 15006-09 Can be any brand of choice.
Absorption triangles FST 18105-03 Can be any brand of choice.
Gelfoam Henry Schein 9083300 "Compressed foam" in protocol.
#10 blades Sklar 06-3010 Can be any brand of choice.
Matrigel Corning 354234 "Injectable matrix" in protocol.
Chicken anti-green fluorescent protein antibody Millipore AB16901
Mouse RT97 hybridoma antibody DSHB RT97
Rabbit anti-neurofilament antibody Encor Biotechnology, Inc PRCA-NF-H
Polyclonal Rabbit anti-Glial Fibrillary Acidic Protein antibody Dako Z033401
Alexa Fluor 488 goat anti-chicken IgG (H+L) ThermoFisher Scientific A-11039
Alexa Fluor 546 goat anti-rabbit IgG (H+L) ThermoFisher Scientific A-11035
Alexa Fluor 647 goat anti-rabbit IgG (H+L) ThermoFisher Scientific A-21244
Alexa Fluor 647 goat anti-mouse IgG (H+L) ThermoFisher Scientific A-21236
Confocal Microscopy Nikon clsi

References

  1. King, V. R., Alovskaya, A., Wei, D. Y., Brown, R. A., Priestley, J. V. The use of injectable forms of fibrin and fibronectin to support axonal ingrowth after spinal cord injury. Biomaterials. 31 (15), 4447-4456 (2010).
  2. Liu, T., Houle, J. D., Xu, J., Chan, B. P., Chew, S. Y. Nanofibrous collagen nerve conduits for spinal cord repair. Tissue Eng Part A. 18 (9-10), 1057-1066 (2012).
  3. Novikova, L. N., Pettersson, J., Brohlin, M., Wiberg, M., Novikov, L. N. Biodegradable poly-beta-hydroxybutyrate scaffold seeded with Schwann cells to promote spinal cord repair. Biomaterials. 29 (9), 1198-1206 (2008).
  4. Bamber, N. I., Li, H., Aebischer, P., Xu, X. M. Fetal spinal cord tissue in mini-guidance channels promotes longitudinal axonal growth after grafting into hemisected adult rat spinal cords. Neural Plast. 6 (4), 103-121 (1999).
  5. Xu, X. M., Zhang, S. X., Li, H., Aebischer, P., Bunge, M. B. Regrowth of axons into the distal spinal cord through a Schwann-cell-seeded mini-channel implanted into hemisected adult rat spinal cord. Eur J Neurosci. 11 (5), 1723-1740 (1999).
  6. Bamber, N. I., et al. Neurotrophins BDNF and NT-3 promote axonal re-entry into the distal host spinal cord through Schwann cell-seeded mini-channels. European Journal of Neuroscience. 13 (2), 257-268 (2001).
  7. Iannotti, C., et al. Glial cell line-derived neurotrophic factor-enriched bridging transplants promote propriospinal axonal regeneration and enhance myelination after spinal cord injury. Exp Neurol. 183 (2), 379-393 (2003).
  8. Deng, L. X., et al. GDNF modifies reactive astrogliosis allowing robust axonal regeneration through Schwann cell-seeded guidance channels after spinal cord injury. Exp Neurol. 229 (2), 238-250 (2011).
  9. Deng, L. X., et al. A Novel Growth-Promoting Pathway Formed by GDNF-Overexpressing Schwann Cells Promotes Propriospinal Axonal Regeneration, Synapse Formation, and Partial Recovery of Function after Spinal Cord Injury. J Neurosci. 33 (13), 5655-5667 (2013).
  10. Chen, X., et al. Bone marrow stromal cells-loaded chitosan conduits promote repair of complete transection injury in rat spinal cord. J Mater Sci Mater Med. 22 (10), 2347-2356 (2011).
  11. Hurtado, A., et al. Robust CNS regeneration after complete spinal cord transection using aligned poly-L-lactic acid microfibers. Biomaterials. 32 (26), 6068-6079 (2011).
  12. Cheng, H., Huang, Y. C., Chang, P. T., Huang, Y. Y. Laminin-incorporated nerve conduits made by plasma treatment for repairing spinal cord injury. Biochem Biophys Res Commun. 357 (4), 938-944 (2007).
  13. Fan, J., et al. Neural regrowth induced by PLGA nerve conduits and neurotrophin-3 in rats with complete spinal cord transection. J Biomed Mater Res B Appl Biomater. 97 (2), 271-277 (2011).
  14. Lietz, M., et al. Physical and biological performance of a novel block copolymer nerve guide. Biotechnol Bioeng. 93 (1), 99-109 (2006).
  15. Novikova, L. N., Novikov, L. N., Kellerth, J. O. Biopolymers and biodegradable smart implants for tissue regeneration after spinal cord injury. Curr Opin Neurol. 16 (6), 711-715 (2003).
  16. Tang, S., et al. The effects of controlled release of neurotrophin-3 from PCLA Scaffolds on the survival and neuronal differentiation of transplanted neural stem cells in a rat spinal cord injury model. PLoS One. 9 (9), e107517 (2014).
  17. Yao, L., et al. Improved axonal regeneration of transected spinal cord mediated by multichannel collagen conduits functionalized with neurotrophin-3 gene. Gene Ther. , (2013).
  18. Xu, X. M., Guénard, V., Kleitman, N., Bunge, M. B. Axonal regeneration into Schwann cell-seeded guidance channels grafted into transected adult rat spinal cord. J Comp Neurol. 351 (1), 145-160 (1995).
  19. Xu, X. M., Chen, A., Guenard, V., Kleitman, N., Bunge, M. B. Bridging Schwann cell transplants promote axonal regeneration from both the rostral and caudal stumps of transected adult rat spinal cord. J Neurocytol. 26 (1), 1-16 (1997).
  20. Takami, T., et al. Schwann cell but not olfactory ensheathing glia transplants improve hindlimb locomotor performance in the moderately contused adult rat thoracic spinal cord. J Neurosci. 22 (15), 6670-6681 (2002).
  21. Bunge, M. B., Wood, P. M. . Handbook of Clinical Neurology. 109, 523-540 (2012).
  22. Fortun, J., Hill, C. E., Bunge, M. B. Combinatorial strategies with Schwann cell transplantation to improve repair of the injured spinal cord. Neurosci Lett. 456 (3), 124-132 (2009).
  23. Haggerty, A. E., Oudega, M. Biomaterials for spinal cord repair. Neurosci Bull. , (2013).
  24. Nomura, H., Tator, C. H., Shoichet, M. S. Bioengineered strategies for spinal cord repair. J Neurotrauma. 23 (3-4), 496-507 (2006).
  25. Straley, K. S., Foo, C. W. P., Heilshorn, S. C. Biomaterial Design Strategies for the Treatment of Spinal Cord Injuries. J Neurotrauma. 27 (1), 1-19 (2010).
  26. Williams, R. R., Henao, M., Pearse, D. D., Bunge, M. B. Permissive Schwann cell graft/spinal cord interfaces for axon regeneration. Cell Transplant. 24 (1), 115-131 (2015).
  27. Williams, R. R., Pearse, D. D., Tresco, P. A., Bunge, M. B. The assessment of adeno-associated vectors as potential intrinsic treatments for brainstem axon regeneration. J Gene Med. 14 (1), 20-34 (2012).
  28. Xu, X. M., Guenard, V., Kleitman, N., Aebischer, P., Bunge, M. B. A combination of BDNF and NT-3 promotes supraspinal axonal regeneration into Schwann cell grafts in adult rat thoracic spinal cord. Exp Neurol. 134 (2), 261-272 (1995).
  29. Lee, Y. S., Arinzeh, T. L. The influence of piezoelectric scaffolds on neural differentiation of human neural stem/progenitor cells. Tissue Eng Part A. 18 (19-20), 2063-2072 (2012).
  30. Lee, Y. S., Collins, G., Arinzeh, T. L. Neurite extension of primary neurons on electrospun piezoelectric scaffolds. Acta Biomater. 7 (11), 3877-3886 (2011).
  31. Lee, Y. S., Wu, S., Arinzeh, T. L., Bunge, M. B. Enhanced noradrenergic axon regeneration into schwann cell-filled PVDF-TrFE conduits after complete spinal cord transection. Biotechnol Bioeng. 114 (2), 444-456 (2017).
  32. Haider, A., Haider, S., Kang, I. -. K. A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab J Chem. , (2015).
  33. Hassiba, A. J., et al. Review of recent research on biomedical applications of electrospun polymer nanofibers for improved wound healing. Nanomedicine (Lond). 11 (6), 715-737 (2016).
  34. Lee, Y. -. S., Livingston Arinzeh, T. Electrospun Nanofibrous Materials for Neural Tissue Engineering. Polymers. 3 (1), 413-426 (2011).
  35. Oraee-Yazdani, S., et al. Co-transplantation of autologous bone marrow mesenchymal stem cells and Schwann cells through cerebral spinal fluid for the treatment of patients with chronic spinal cord injury: safety and possible outcome. Spinal Cord. 54 (2), 102-109 (2016).
  36. Saberi, H., et al. Safety of intramedullary Schwann cell transplantation for postrehabilitation spinal cord injuries: 2-year follow-up of 33 cases. J Neurosurg Spine. 15 (5), 515-525 (2011).
  37. Saberi, H., et al. Treatment of chronic thoracic spinal cord injury patients with autologous Schwann cell transplantation: an interim report on safety considerations and possible outcomes. Neurosci Lett. 443 (1), 46-50 (2008).
  38. Yazdani, S. O., et al. A comparison between neurally induced bone marrow derived mesenchymal stem cells and olfactory ensheathing glial cells to repair spinal cord injuries in rat. Tissue Cell. 44 (4), 205-213 (2012).
  39. Zhou, X. H., et al. Transplantation of autologous activated Schwann cells in the treatment of spinal cord injury: six cases, more than five years of follow-up. Cell Transplant. 21, S39-S47 (2012).
  40. Chen, L., et al. A prospective randomized double-blind clinical trial using a combination of olfactory ensheathing cells and Schwann cells for the treatment of chronic complete spinal cord injuries. Cell Transplant. 23, S35-S44 (2014).
  41. Guest, J., Santamaria, A. J., Benavides, F. D. Clinical translation of autologous Schwann cell transplantation for the treatment of spinal cord injury. Curr Opin Organ Transplant. 18 (6), 682-689 (2013).
  42. Bunge, M. B., Monje, P. V., Khan, A., Wood, P. M. . Progress in Brain Research. , (2017).
  43. Meijs, M. F., et al. Basic fibroblast growth factor promotes neuronal survival but not behavioral recovery in the transected and Schwann cell implanted rat thoracic spinal cord. J Neurotrauma. 21 (10), 1415-1430 (2004).
  44. Blits, B., et al. Lentiviral vector-mediated transduction of neural progenitor cells before implantation into injured spinal cord and brain to detect their migration, deliver neurotrophic factors and repair tissue. Restor Neurol Neurosci. 23 (5-6), 313-324 (2005).
  45. Follenzi, A., Naldini, L. HIV-based vectors. Preparation and use. Methods Mol Med. 69, 259-274 (2002).
  46. Fouad, K., et al. Combining Schwann cell bridges and olfactory-ensheathing glia grafts with chondroitinase promotes locomotor recovery after complete transection of the spinal cord. J Neurosci. 25 (2), 1169-1178 (2005).
  47. Bates, M. L., Puzis, R., Bunge, M. B., Lane, E. L., Dunnett, S. B. . Animal Models of Movement Disorders: Volume II. , 381-399 (2011).
check_url/fr/56077?article_type=t

Play Video

Citer Cet Article
Lee, Y., Wu, S., Arinzeh, T. L., Bunge, M. B. Transplantation of Schwann Cells Inside PVDF-TrFE Conduits to Bridge Transected Rat Spinal Cord Stumps to Promote Axon Regeneration Across the Gap. J. Vis. Exp. (129), e56077, doi:10.3791/56077 (2017).

View Video