Summary

使用紫罗兰兴奋细胞渗透DNA结合染料分离穆林精子生成细胞

Published: January 14, 2021
doi:

Summary

在这里,我们提出了一个简单而有效的方法来从成年小鼠睾丸中分离活的美病细胞和后美生菌细胞。使用低细胞毒性、紫罗兰兴奋的DNA结合染料和荧光激活细胞分选,可以分离高度丰富的精子致原细胞群,用于许多下游应用。

Abstract

分离美的精子细胞对于研究美因病和精子生成背后的分子机制至关重要。虽然有既定的细胞隔离协议使用 Hoechst 33342 染色结合荧光激活细胞分选,但它需要配备紫外线激光的细胞分拣机。在这里,我们描述一个细胞隔离协议使用染料循环紫罗兰(DCV)污渍,低细胞毒性DNA结合染料结构类似于霍赫斯特33342。DCV 可以同时受到紫外线和紫罗兰激光器的兴奋,从而提高了设备选择的灵活性,包括未配备紫外线激光的电池分拣机。使用该协议,可以分离出三个活细胞亚群在美的正头 I,包括麻黄素/酶,帕奇滕,和二苯甲酸精子细胞,以及后美的圆形精子。我们还描述了一个协议,用于准备从鼠标睾丸的单细胞悬浮。总体而言,该过程需要很短的时间才能完成(4-5 小时取决于所需的单元数量),这有利于许多下游应用。

Introduction

精子生成是一个复杂的过程,其中一小群精子干细胞维持着大量精子在整个成年生中连续生产1,2。在精子生成过程中,动态染色质重塑发生在精子生成细胞经历美病产生单倍体精子3,4,5。分离美的精子细胞对于分子研究至关重要,并建立了几种不同的分离美亚精子细胞的方法,包括沉积分离6、7和荧光活性细胞分选(FACS)8、9、10、11、12、13、14、15、16、17。但是,这些方法有技术限制。虽然沉积基分离产生大量的细胞5,6,7,它是劳动密集型的。已建立的基于FACS的方法使用Hochst 33342(Ho342)根据DNA含量和光散射特性分离美的精子细胞,并要求FACS细胞分拣机配备紫外线(UV)激光8,9,10,11。基于FACS的替代方法要求转基因小鼠线表达荧光蛋白,精子生成12的同步,或细胞固定和抗体标签,不兼容分离活细胞13。虽然有另一种方法使用细胞渗透DNA结合染料,DyeCycle绿色染色14,15,16,17,此方法被推荐用于分离精子细胞从幼年睾丸。因此,迫切需要开发一种简单而坚固的分离方法,用于活体精子细胞,可应用于任何年龄的小鼠菌株,并可以使用任何 FACS 细胞分拣机进行。

在这里,我们描述这样一个长期寻求的细胞隔离协议使用染料循环紫罗兰(DCV)污渍。DCV是一种低细胞毒性,细胞渗透DNA结合染料结构类似于Ho342,但与激发光谱转向紫罗兰范围18。此外,与 DCG 相比,DCV 具有更广泛的发射频谱。因此,它可以通过紫外线和紫罗兰激光器,从而提高设备的灵活性,允许使用不配备UV激光的FACS细胞分拣机。此处介绍的 DCV 协议使用二维分离,具有 DCV 蓝色和 DCV 红色,模仿 Ho342 协议的优势。凭借这一优势,我们的DCV协议使我们能够从成人睾丸中分离出高度丰富的生殖细胞。我们提供详细的浇注方案,从一只小鼠的成年小鼠睾丸(从两个睾丸)分离出活的精子细胞。我们还描述了一个高效和快速的协议,用于准备单细胞悬浮从鼠标睾丸,可用于此细胞隔离。该程序需要很短的时间才能完成(准备单细胞悬浮 – 1小时,染色染色 – 30分钟,细胞分选 – 2-3小时:总计 – 4-5小时,视所需细胞数量不同; 图1)。细胞分离后,可以完成广泛的下游应用,包括RNA-seq、ATAC-seq、ChIP-seq和细胞培养。

Protocol

该协议遵循机构动物护理和使用委员会的准则(协议号)。IACUC2018-0040)在辛辛那提儿童医院医疗中心。 1. 用于制备睾丸悬浮液的设备和试剂设置 将每种酶储存在1x汉克斯的平衡盐溶液(HBSS)中,储存在-20°C(表1)。注:在实验前随时准备。 实验前一天:在4°C下用胎儿牛血清(FBS)收集管(1.5 mL管)。 实验当天:将水浴设置为37°C。</…

Representative Results

此排序协议的代表性结果如图3 所示。两个睾丸(一只鼠标)的总分拣时间通常为3小时左右,这取决于细胞悬浮液的浓度和分拣速度。分类后,通过SYCP3和+2AX的免疫处理确认精子细胞的纯度(图3A)。排序L/Z、P、D精子细胞分数的代表性纯度分别约为80.4%、90.6%和87.6%(图3C)。我们根据先前19日公布的标准确定子阶段</…

Discussion

在这里,我们提出了一个实用和简单的协议,从单个成年雄性小鼠中分离精子细胞和精子的亚群。为了确保此协议的可重复性,有一些关键步骤需要注意。在酶消化之前,洗涤步骤旨在去除间分裂细胞;消化后,这一步有助于去除精子和碎片。洗/离心3次很重要。在我们的分离缓冲液配方中,几种不同酶的组合有助于将睾丸分离到单细胞悬浮液中,而不会造成过多的细胞损伤。轻轻移液以避免造成?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

我们感谢 Namekawa 、Yoshida 和 Maezawa 实验室的成员的帮助;凯蒂·格哈特编辑手稿;Mary Ann Handel 用于共享 H1T 抗体,辛辛那提儿童医院医疗中心 (CCHMC) 研究流细胞学核心,用于共享由 NIH S10OD023410 支持的 FACS 设备;科学研究资助(KAKENHI;17K07424)给T.N.;拉洛尔基金会博士后奖学金给美国;AMED-CREST (JP17gm1110005h0001) 到 S.Y.;阿扎布大学研究服务部资助研究项目, 教育、文化、体育、科学和技术部(MEXT)支持的私立大学研究品牌项目(2016-2019年)、研究活动启动资助计划(19K21196)、武田科学基金会(2019年)和Uhara纪念基金会研究奖励基金(2018年)对S.M;国家卫生研究院 R01 GM122776 至 S.H.N.

Materials

1.5 ml tube Watson 131-7155C
100 mm Petri dish Corning, Falcon 351029
15 mL Centrifuge tube Watson 1332-015S
5 ml polystyrene tube with cell strainer snap cap (35 µm nylon mesh) Corning, Falcon 352235
50 mL Centrifuge tube Watson 1342-050S
60 mm Petri dish Corning, Falcon 351007
70 µm nylon mesh Corning, Falcon 352350
Cell sorter Sony SH800S
Centrifuge
Collagenase, recombinant, Animal-derived-free FUJIFILM Wako Pure Chemical Corporation 036-23141
Collagenase, Type 1 Worthington LS004196
Cover glass Fisher 12-544-G
Cytospin 3 Shandon
DAPI (4',6-Diamidino-2-Phenylindole, Dihydrochloride) Fisher D1306 working concentration: 0.1 μg/mL
Dnase I Sigma D5025-150KU
Donkey serum Sigma S30-M
Dulbecco’s phosphate-buffered saline (DPBS) Gibco 14190144
Dulbecco's Modified Eagle Medium (DMEM) Gibco 11885076
Fetal bovine serum (FBS) Gibco 16000044
Hostone H1T antibody gift from Mary Ann Handel 1/2000 diluted
Hank’s balanced salt solution (HBSS) Gibco 14175095
Hyaluronidase from bovine testes Sigma H3506-1G
Phosphate buffered saline (PBS) Sigma P5493-4L
Pipettemen
ProLong Gold Antifade Mountant Fisher P36930
rH2AX antibody Millipore 05-635 working concentration: 2 μg/mL
Sperm Fertilization Protein 56 (Sp56) antibody QED Bioscience 55101 working concentration: 0.5 μg/mL
Sterilized forceps and scissors
Superfrost /Plus Microscope Slides Fisher 12-550-15
SYCP3 antibody Abcam ab205846 working concentration: 5 μg/mL
TWEEN 20 (Polysorbate 20) Sigma P9416
Vybrant DyeCycle Violet Stain (DCV) Invitrogen V35003
Water bath

References

  1. Griswold, M. D. Spermatogenesis: The Commitment to Meiosis. Physiological Reviews. 96 (1), 1-17 (2016).
  2. Yoshida, S. Mouse Spermatogenesis Reflects the Unity and Diversity of Tissue Stem Cell Niche Systems. Cold Spring Harbor Perspectives in Biology. , 036186 (2020).
  3. Rathke, C., Baarends, W. M., Awe, S., Renkawitz-Pohl, R. Chromatin dynamics during spermiogenesis. Biochimica et Biophysica Acta. 1839 (3), 155-168 (2014).
  4. Maezawa, S., et al. SCML2 promotes heterochromatin organization in late spermatogenesis. Journal of Cell Science. 131 (17), 217125 (2018).
  5. Maezawa, S., Yukawa, M., Alavattam, K. G., Barski, A., Namekawa, S. H. Dynamic reorganization of open chromatin underlies diverse transcriptomes during spermatogenesis. Nucleic Acids Research. 46 (2), 593-608 (2018).
  6. Bellve, A. R. Purification, culture, and fractionation of spermatogenic cells. Methods in Enzymology. 225, 84-113 (1993).
  7. Bryant, J. M., Meyer-Ficca, M. L., Dang, V. M., Berger, S. L., Meyer, R. G. Separation of spermatogenic cell types using STA-PUT velocity sedimentation. Journal of Visualized Experiments. (80), e50648 (2013).
  8. Gaysinskaya, V., Bortvin, A. Flow cytometry of murine spermatocytes. Current Protocols in Cytometry. 72, (2015).
  9. Bastos, H., et al. Flow cytometric characterization of viable meiotic and postmeiotic cells by Hoechst 33342 in mouse spermatogenesis. Cytometry Part A. 65 (1), 40-49 (2005).
  10. Getun, I. V., Torres, B., Bois, P. R. Flow cytometry purification of mouse meiotic cells. Journal of Visualized Experimments. (50), e2602 (2011).
  11. Gaysinskaya, V., Soh, I. Y., van der Heijden, G. W., Bortvin, A. Optimized flow cytometry isolation of murine spermatocytes. Cytometry Part A. 85 (6), 556-565 (2014).
  12. Romer, K. A., de Rooiji, D. G., Kojima, M. L., Page, D. C. Isolating mitotic and meiotic germ cells from male mice by developmental synchronization, staging, and sorting. Biologie du développement. 443 (1), 19-34 (2018).
  13. Lam, K. G., Brick, K., Cheng, G., Pratto, F., Camerini-Otero, R. D. Cell-type-specific genomics reveals histone modification dynamics in mammalian meiosis. Nature Communications. 10 (1), 3821 (2019).
  14. Geisinger, A., Rodriguez-Casuriaga, R. Flow Cytometry for the Isolation and Characterization of Rodent Meiocytes. Methods in Molecular Biology. 1471, 217-230 (2017).
  15. da Cruz, I., et al. Transcriptome analysis of highly purified mouse spermatogenic cell populations: gene expression signatures switch from meiotic-to postmeiotic-related processes at pachytene stage. BMC Genomics. 17, 294 (2016).
  16. Rodriguez-Casuriaga, R., et al. Rapid preparation of rodent testicular cell suspensions and spermatogenic stages purification by flow cytometry using a novel blue-laser-excitable vital dye. MethodsX. 1, 239-243 (2014).
  17. Trovero, M. F., et al. Revealing stage-specific expression patterns of long noncoding RNAs along mouse spermatogenesis. RNA Biology. 17 (3), 350-365 (2020).
  18. Telford, W. G., Bradford, J., Godfrey, W., Robey, R. W., Bates, S. E. Side population analysis using a violet-excited cell-permeable DNA binding dye. Stem Cells. 25 (4), 1029-1036 (2007).
  19. Alavattam, K. G., Abe, H., Sakashita, A., Namekawa, S. H. Chromosome Spread Analyses of Meiotic Sex Chromosome Inactivation. Methods in Molecular Biology. 1861, 113-129 (2018).
  20. Maezawa, S., et al. Super-enhancer switching drives a burst in gene expression at the mitosis-to-meiosis transition. Nature Structural & Molecular Biology. , (2020).
  21. Sakashita, A., et al. Endogenous retroviruses drive species-specific germline transcriptomes in mammals. Nature Structural & Molecular Biology. , (2020).
  22. Agrimson, K. S., et al. Characterizing the Spermatogonial Response to Retinoic Acid During the Onset of Spermatogenesis and Following Synchronization in the Neonatal Mouse Testis. Biology of Reproduction. 95 (4), 81 (2016).
  23. Hogarth, C. A., et al. Turning a spermatogenic wave into a tsunami: synchronizing murine spermatogenesis using WIN 18,446. Biology of Reproduction. 88 (2), 40 (2013).
  24. Patel, L., et al. Dynamic reorganization of the genome shapes the recombination landscape in meiotic prophase. Nature Structural & Molecular Biology. 26 (3), 164-174 (2019).
  25. Alavattam, K. G., et al. Attenuated chromatin compartmentalization in meiosis and its maturation in sperm development. Nature Structural & Molecular Biology. 26 (3), 175-184 (2019).
  26. Adams, S. R., et al. RNF8 and SCML2 cooperate to regulate ubiquitination and H3K27 acetylation for escape gene activation on the sex chromosomes. PLoS Genetics. 14 (2), 1007233 (2018).
  27. Wiltshire, T., Park, C., Caldwell, K. A., Handel, M. A. Induced premature G2/M-phase transition in pachytene spermatocytes includes events unique to meiosis. Biologie du développement. 169 (2), 557-567 (1995).
check_url/fr/61666?article_type=t

Play Video

Citer Cet Article
Yeh, Y., Hu, M., Nakagawa, T., Sakashita, A., Yoshida, S., Maezawa, S., Namekawa, S. H. Isolation of Murine Spermatogenic Cells using a Violet-Excited Cell-Permeable DNA Binding Dye. J. Vis. Exp. (167), e61666, doi:10.3791/61666 (2021).

View Video