Summary

जी प्रोटीन रिसेप्टर युग्मित spectrally हल दो photon माइक्रोस्कोपी का उपयोग सहभागिता के vivo मात्रा में

Published: January 19, 2011
doi:

Summary

एक spectrally हल दो photon माइक्रोस्कोपी इमेजिंग प्रणाली काम करके, Forster अनुनाद ऊर्जा (झल्लाहट) स्थानांतरण क्षमता के पिक्सेल स्तर के नक्शे झिल्ली रिसेप्टर्स होमोसेक्सुअल oligomeric परिसरों फार्म धारणा व्यक्त की कोशिकाओं के लिए प्राप्त कर रहे हैं. दक्षता नक्शे झल्लाहट, हम अध्ययन के तहत oligomer जटिल के बारे में stoichiometric जानकारी का अनुमान करने में सक्षम हैं.

Abstract

The study of protein interactions in living cells is an important area of research because the information accumulated both benefits industrial applications as well as increases basic fundamental biological knowledge. Förster (Fluorescence) Resonance Energy Transfer (FRET) between a donor molecule in an electronically excited state and a nearby acceptor molecule has been frequently utilized for studies of protein-protein interactions in living cells. The proteins of interest are tagged with two different types of fluorescent probes and expressed in biological cells. The fluorescent probes are then excited, typically using laser light, and the spectral properties of the fluorescence emission emanating from the fluorescent probes is collected and analyzed. Information regarding the degree of the protein interactions is embedded in the spectral emission data. Typically, the cell must be scanned a number of times in order to accumulate enough spectral information to accurately quantify the extent of the protein interactions for each region of interest within the cell. However, the molecular composition of these regions may change during the course of the acquisition process, limiting the spatial determination of the quantitative values of the apparent FRET efficiencies to an average over entire cells. By means of a spectrally resolved two-photon microscope, we are able to obtain a full set of spectrally resolved images after only one complete excitation scan of the sample of interest. From this pixel-level spectral data, a map of FRET efficiencies throughout the cell is calculated. By applying a simple theory of FRET in oligomeric complexes to the experimentally obtained distribution of FRET efficiencies throughout the cell, a single spectrally resolved scan reveals stoichiometric and structural information about the oligomer complex under study. Here we describe the procedure of preparing biological cells (the yeast Saccharomyces cerevisiae) expressing membrane receptors (sterile 2 α-factor receptors) tagged with two different types of fluorescent probes. Furthermore, we illustrate critical factors involved in collecting fluorescence data using the spectrally resolved two-photon microscopy imaging system. The use of this protocol may be extended to study any type of protein which can be expressed in a living cell with a fluorescent marker attached to it.

Protocol

1. प्लाज्मिड डिजाइन ब्याज की प्रोटीन दो अलग फ्लोरोसेंट लेबल के लिए जुड़े हुए हैं, के रूप में अगले वर्णित. फ्लोरोसेंट लेबल कक्ष के भीतर प्रोटीन का स्थान है, लेकिन यह भी 1 प्रोटीन की होमोसेक्?…

Discussion

इस प्रस्तुति में, हम कैसे और vivo में एक प्रोटीन oligomer जटिल के बारे में जानकारी संरचनात्मक आकार निर्धारित करने के लिए सचित्र. जबकि प्रस्तुत डाटा एक विशिष्ट झिल्ली (यानी Ste2p) रिसेप्टर खमीर कोशिकाओं में व्य?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

यह काम UW-मिलवॉकी अनुसंधान विकास पहल, जैव चिकित्सा और स्वास्थ्य टेक्नोलॉजीज के लिए विस्कॉन्सिन संस्थान, और ब्राडली फाउंडेशन द्वारा समर्थित किया गया था.

Materials

Material Name Tipo Company Catalogue Number Comment
Peptone   Fisher Scientific BP1420  
Yeast Extract   Fisher Scientific BP1422  
Polyethlyene Glycol 4000   Hampton Research HR2-605  
Yeast Nitrogen Base w/o (NH4)2SO4 and amino acids   Fisher Scientific DF0335-15-9  
Yeast Synthetic Drop-out Medium Supplements   Sigma Aldrich Y2001  
D-Glucose   Fisher Scientific D16-1  
Agar   Fisher Scientific S70210  
Ammonium Sulfate   Fisher Scientific A702-500  
Potassium Chloride   Acros Organics 424090010  
Leucine   Fisher Scientific BP385  
Histidine   Fisher Scientific BP382  
Plan Achromat Infinity Corrected 100x Oil Immersion Objective NA=1.43   Nikon    
Spectrally resolved two photon microscope        

Riferimenti

  1. Raicu, V., Diaspro, A. . Nanoscopy and Multidimensional Optical Fluorescence Microscopy. , (2010).
  2. Lakowicz, J. R. . Principles of Fluorescence Spectroscopy. , (2006).
  3. Raicu, V., Popescu, A. . Integrated Molecular and Cellular Biophysics. , (2008).
  4. Selvin, P. R. The renaissance of fluorescence resonance energy transfer. Nat Struct Biol. 7, 730-734 (2000).
  5. Raicu, V., Jansma, D. B., Miller, R. J., Friesen, J. D. Protein interaction quantified in vivo by spectrally resolved fluorescence resonance energy transfer. Biochem J. 385, 265-277 (2005).
  6. Maurel, D. Cell-surface protein-protein interaction analysis with time-resolved FRET and snap-tag technologies: application to GPCR oligomerization. Nat Methods. 5, 561-567 (2008).
  7. Shyu, Y. J., Suarez, C. D., Hu, C. D. Visualization of AP-1 NF-kappaB ternary complexes in living cells by using a BiFC-based FRET. Proc Natl Acad Sci USA. 105, 151-156 (2008).
  8. Demarco, I. A., Periasamy, A., Booker, C. F., Day, R. N. Monitoring dynamic protein interactions with photoquenching FRET. Nat Methods. 3, 519-524 (2006).
  9. Wallrabe, H., Periasamy, A. Imaging protein molecules using FRET and FLIM microscopy. Curr Opin Biotechnol. 16, 19-27 (2005).
  10. Wlodarczyk, J. Analysis of FRET signals in the presence of free donors and acceptors. Biophys J. 94, 986-1000 (2008).
  11. Förster, T. Experimentelle und theoretische Untersuchung des zwischenmolekularen bergangs von Elektronenanregungsenergie. Z. Naturforsch. A: Astrophys Phys Phys Chem. 4, 321-321 (1949).
  12. Shaner, N. C., Steinbach, P. A., Tsien, R. Y. A guide to choosing fluorescent proteins. Nat Methods. 2, 905-909 (2005).
  13. Giepmans, B. N., Adams, S. R., Ellisman, M. H., Tsien, R. Y. The fluorescent toolbox for assessing protein location and function. Science. 312, 217-2124 (2006).
  14. Zimmermann, T., Rietdorf, J., Girod, A., Georget, V., Pepperkok, R. Spectral imaging and linear un-mixing enables improved FRET efficiency with a novel GFP2-YFP FRET pair. FEBS Lett. 531, 245-249 (2002).
  15. Nagai, T. A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol. 20, 87-90 (2002).
  16. Rizzo, M. A., Springer, G. H., Granada, B., Piston, D. W. An improved cyan fluorescent protein variant useful for FRET. Nat Biotechnol. 22, 445-449 (2004).
  17. Raicu, V. Efficiency of Resonance Energy Transfer in Homo-Oloigomeric Complexes of Proteins. J Biol Phys. 33, 109-127 (2007).
  18. Raicu, V., Fung, R., Melnichuk, M., Chaturvedi, A. . , (2007).
  19. Raicu, V. Determination of supramolecular structure and spatial distribution of protein complexes in living cells. Nat Photonics. 3, 107-113 (2009).
  20. Rath, S., Sullivan, A. P., Stoneman, M. R., Raicu, V. Microspectroscopic method for determination of size and distribution of protein complexes in vivo. Proc of SPIE. 7378, 737829-737829 (2009).
  21. Kurjan, J. Pheromone response in yeast. Annu Rev Biochem. 61, 1097-1129 (1992).
  22. Overton, M. C., Chinault, S. L., Blumer, K. J. Oligomerization of G-protein-coupled receptors: lessons from the yeast Saccharomyces cerevisiae. Eukaryot Cell. 4, 1963-1970 (2005).
check_url/it/2247?article_type=t

Play Video

Citazione di questo articolo
Stoneman, M., Singh, D., Raicu, V. In vivo Quantification of G Protein Coupled Receptor Interactions using Spectrally Resolved Two-photon Microscopy. J. Vis. Exp. (47), e2247, doi:10.3791/2247 (2011).

View Video