Summary

捕获和血液中的活循环肿瘤细胞释放

Published: October 28, 2016
doi:

Summary

的协议,利用聚(N -异丙基丙烯酰胺)(PIPAAm)有效捕获和可行的循环肿瘤细胞(CTC)的温敏缓释包衣微型过滤器呈现。这种方法可以从患者的血液和可行的CTC随后释放CTC的捕获下游片文化,分析和鉴定。

Abstract

我们证明了从全血存活的循环肿瘤细胞(CTC)的大小基于捕获的方法,用这些细胞从芯片释放用于下游分析和/或培养沿。该战略采用采用了新型的C型帕利灵膜孔槽的微过滤器捕获CTC和聚对捕获的CTC的温敏可行的释放涂层(N -异丙基丙烯酰胺)(PIPAAm)。活细胞的捕获是通过利用与特定尺寸的槽孔隙几何形状的设计,以减少通常与过滤过程相关的剪切应力使能。而微滤器表现出高的捕集效率,这些细胞的释放是不平凡的。典型地,使用的技术,如逆流或细胞刮时只有细胞的一小部分被释放。这些上皮癌细胞的C型帕利灵膜的附着力强的原因是非特异性静电相互作用。为了抵消日是影响,我们采用的使用PIPAAm涂层和利用它的热响应界面性能从过滤器释放的细胞。血液是首先在室温下过滤。低于32°C,PIPAAm是亲水性的。此后,将过滤器放置在任一培养基或维持在37℃的缓冲液,这导致在PIPAAm转动疏水性的,并且随后释放静电结合的细胞。

Introduction

转移性疾病是负责大多数癌症死亡。为转移预后开发和伴随诊断的生物标记物是癌症管理和治疗的关键。循环肿瘤细胞(CTC)在肿瘤传播和转移中心作用。此外,作为一个“液体活检”生物标记方便,CTC肿瘤患者的外周血中一直在上升为“癌症生物标志物研究的温床”。 CTC已经被证实为各种癌症的设置,包括乳腺癌,前列腺癌和直肠癌1预后标志物 3。然而,最近在CTC领域的进展已经表明,这些稀有细胞的单纯列举具有有限的临床效用,如图介入临床试验4。因此,存在对技术,使四氯化碳的分子和功能表征的新兴需求。目前,只有一些技术存在允许FOR无抗原偏差,可行的捕获和CTC的释放,使下游强劲分子和功能分析5,6。这些微加工器件的大多数被耦合到微流体平台,因此具有在可处理的血液量,这从2-4毫升7范围的限制因素 10。四氯化碳是在抽血(7.5毫升)的单管罕见的事件,因此,进一步降低了可处理血液量,极大地妨碍了捕获和隔离感兴趣的这些细胞的机会。

我们已经开发出两种类型的C型帕利灵膜微过滤装置的四氯化碳的其中采用更大的肿瘤细胞和正常的小血细胞11,12之间的大小差异捕获。我们以前曾报道对圆孔径枚举过滤并用FDA批准的平台,其中该微滤器被证明是在CTC捕获效率优于比较它对于癌症患者的血液样本13,14。然而,圆形过滤器的一个限制是在过滤之前使用基于甲醛固定液的必要性。这个过程会保留细胞形态,同时使它们能够承受在过滤过程的剪切应力和压力。而枚举和分子研究可以片上13来执行,在固定剂削弱以执行功能特性的能力。为了解决此限制,我们开发了一个狭槽的孔的过滤器 ,否定的必要性来修复之前过滤细胞( 图1)。槽孔隙几何形状(6微米宽度x 40微米长度槽的孔)允许而仅部分闭塞的细孔,从而仍允许用于其它血细胞的分类通道和减轻压力的上升,这将导致细胞损伤要捕获的肿瘤细胞和最终破裂15,16槽孔隙盒由2丙烯酸系片其三明治的顶部和底部件与聚二甲基硅氧烷(PDMS)作为垫圈之间的槽中微孔过滤以提供防漏密封14,15( 图1)。

而槽细孔过滤器的捕获效率是高的,( 表1),所捕获的CTC由强的非特异性静电相互作用,而不是介导的粘附15外基质(ECM)结合于C型帕利灵膜。方法,例如逆流或使用细胞刮刀不能有效地从过滤器释放的细胞,或导致细胞损伤和细胞死亡。我们探讨的一个非常规的使用PIPAAm来制定发布策略15。 PIPAAm是经历在液温32℃17的可逆低临界溶液温度(LCST)相转变的聚合物。传统上,PIPAAm的这一特性已被广泛地探讨了组织工程应用。通常,细胞是在PIPAAm培养涂层表面在37℃时PIPAAm是疏水性。当培养温度低于32°C,其中的PIPAAm涂层表面变得水合17,18转移到细胞可以被分离成片状。我们通过在室温(低于32℃)进行过滤处理,然后通过将保持在37℃的培养介质中的过滤器使得细胞释放利用此热性能。在此温度下,PIPAAm聚合物层成为疏水性的,从而释放静电结合的细胞15( 图1)。

虽然温度响应的方法以及其它方法已成功地实施,以实现可行四氯化碳捕获和释放19 由这些技术报告共享21,一键潜在的缺点是,它们都采用四氯化碳捕获的抗原依赖性原理。基于抗原捕获CTC,如所示的Previously,可能导致偏CTC分析11,14。例如,许多基于亲和力的技术采用结合EpCAM的四氯化碳捕获抗体。然而,四氯化碳已经显示出表达的EpCAM的各级,通过这些技术导致的EpCAM低和EpCAM的负四氯化碳遗漏。此外,当CTC非上皮起源是在黑色素瘤和肉瘤设置兴趣爱好,如CTC可能发生的局限性。因此,这种技术允许可行CTC捕获和释放无基于抗原捕获引入潜在的偏见是非常可取的。

重要的是,基于微滤器捕获设备纯粹的尺寸和释放的策略是不可知的某些表面标记的存在。我们认为,PIPAAm涂层微孔过滤器的工作将有助于扩大我们的转移过程的理解,通过提供有效且高效地吸收和释放CTC为下游分析的能力。今年5月烈性ially露出的量新型靶向全身治疗可能被定向以及提供一种能够很容易地被监测,并在癌症患者管理助剂的生物标志物的新分子。

Protocol

道德声明:为了保护人类受试者的权益,根据如下迈阿密机构审查委员会的IRB 20150020下的大学批准的方案知情同意书,获得血液样本。 注:血液要过滤四氯化碳采集应以EDTA管收集,以防血液凝结。 1.涂层用聚(N-异丙丙基丙烯酰胺)(PIPAAm)的精密的过滤称出PIPAAm以制备丁醇10%w / v的溶液。混合使用涡旋直至溶液澄清。 切胶显微镜滑入大致12毫米×12平方毫米或者用剪刀?…

Representative Results

用健康捐献者的血液(迈阿密IRB 20150020的大学批准的方案如下知情同意下而得到的)培养的癌细胞,可行的循环肿瘤细胞(CTC),实现了采集,发布和检索效率的释放温敏技术飙升分别为94%±9%,82%±5%和77%±5%( 表1)15。通过比较,未涂覆的过滤器的释放和检索效率显著降低(7%±1%的释放效率和6%±1%检索效率)为( 表1)15。</su…

Discussion

从全血中捕获可行四氯化碳和从微滤器释放他们的方法是相对简单;然而,几个关键点值得一提。这是必要的,因为与无菌条件在整个过程中保持所有细胞培养。涂布PIPAAm过滤器的初始步骤是重要的,因为用于释放从过滤器单元的技术的基础是基于利用PIPAAm的温度响应界面性质。为了确保过滤器已被有效地涂覆到涂覆之前测量在显微镜下在过滤器上的孔(狭缝孔的宽度和长度)的大小,然后再次测…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

We thank all the patients who have donated blood samples to support this work. We thank Drs. Guiseppe Giaconne, Ritesh Parajuli, and Marc E. Lippman for their assistance in clinical sample acquirement, and Drs. Carmen Gomez, Ralf Landgraf, Stephan Züchner, Toumy Guettouche, Diana Lopez for their insightful discussions. Zheng Ao thanks partial support and assistance from the Sheila and David Fuente Graduate Program in Cancer Biology, Sylvester Comprehensive Cancer Center.

Materials

Slot Filter Circulogix Inc. MSF-01 Different size filters available based for filtration for CTC from blood or urine (www.circulogixinc.com)
poly(N-iso-propylacrylamide) (PIPAAm)  Ploysciences Inc. 21458 Non-Hazardous. Store at room temp.
1-Butanol Sigma Aldrich B7906 Use in well ventilated area
Plastic Microscope Slides Cole-Parmer 48510-30 Any plastic slides or alternatively any sort of square (Metal, Acrylic etc.) can be used if it will be bale to hold the 8mmx8mm filter square
Spin Coater Specialty Coating Systems SCS G3 Spin Coater Instrument
Polyimide Tape Uline S-7595 Polyimide is the generic name for Kapton Tape which can be purchased form multiple vendors (Amazon, Kaptontape.com)
HBSS- Hank's Balanced Salt Solution Gibco 14025-092
1XPBS Gibco 10010-023
McCoy's Gibco 16600-082 Warm in 37 ⁰C water bath before use. McCoys was used for SKBr3 cells, if you use different cell lines or patient blood, please use media that would be optimal for that particular case
Falcon Petri dishes 35×10 mm VWR 25373-041
Microfilter Cassette Circulogix Inc. FC-01 Custom catridges are avilable based on filtration for CTC from blood or urine 
Syringe 20mL BD Scientific 302830
Syringe Pump KD scientific  78-0100V Any syringe pump capable of holding a 25mL syringe may be used
Cellstar 50mL Centrifuge tube VWR 82050-322
Greiner Bio One 6 well plate VWR 89131-688 Any brand can be used, as long as the surface is compatiable for cell adesion and not repellant
SKBR3 Cells ATCC HTB-30
Live Dead Assay Life Technologies L3224 Any assay that can provide a reasonable analysis to evaluate live cells will work
Cell Culture Incubator VWR 98000-368 Any incubator that can be used for cell culture will suffice

Riferimenti

  1. Cristofanilli, M., Budd, G. T., et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med. 351 (8), 781-791 (2004).
  2. de Bono, J. S., Scher, H. I., et al. Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clin Cancer Res. 14 (19), 6302-6309 (2008).
  3. Cohen, S. J., Punt, C. J. a., et al. Prognostic significance of circulating tumor cells in patients with metastatic colorectal cancer. Ann. Oncol. 20 (7), 1223-1229 (2009).
  4. Smerage, J. B., Barlow, W. E., et al. Circulating Tumor Cells and Response to Chemotherapy in Metastatic Breast Cancer: SWOG S0500. J. Clin. Oncol. 32 (31), 3483-3490 (2014).
  5. Mach, A. J., Kim, J. H., Arshi, A., Hur, S. C., Di Carlo, D. Automated cellular sample preparation using a Centrifuge-on-a-Chip. Lab chip. 11 (17), 2827-2834 (2011).
  6. Ozkumur, E., Shah, A. M., et al. Inertial Focusing for Tumor Antigen-Dependent and -Independent Sorting of Rare Circulating Tumor Cells. Sci. Transl. Med. 5 (179), 179 (2013).
  7. Nagrath, S., Sequist, L. V., et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature. 450 (7173), 1235-1239 (2007).
  8. Hosokawa, M., Kenmotsu, H., et al. Size-Based Isolation of Circulating Tumor Cells in Lung Cancer Patients Using a Microcavity Array System. PLoS ONE. 8 (6), (2013).
  9. Bhagat, A. A. S., Hou, H. W., Li, L. D., Lim, C. T., Han, J. Pinched flow coupled shear-modulated inertial microfluidics for high-throughput rare blood cell separation. Lab on a chip. 11 (11), 1870-1878 (2011).
  10. Tan, S. J., Lakshmi, R. L., Chen, P., Lim, W. -. T., Yobas, L., Lim, C. T. Versatile label free biochip for the detection of circulating tumor cells from peripheral blood in cancer patients. Biosens. Bioelectron. 26 (4), 1701-1705 (2010).
  11. Vona, G., Sabile, A., et al. Isolation by size of epithelial tumor cells a new method for the immunomorphological and molecular characterization of circulatingtumor cells. Am. J. Pathol. 156 (1), 57-63 (2000).
  12. Marrinucci, D., Bethel, K., et al. Case study of the morphologic variation of circulating tumor cells. Human pathology. 38 (3), 514-519 (2007).
  13. Lin, H. K., Zheng, S., et al. Portable filter-based microdevice for detection and characterization of circulating tumor cells. Clin. Cancer Res. 16 (20), 5011-5018 (2010).
  14. Williams, A., Rawal, S., et al. Clinical translation of a novel microfilter technology Capture, characterization and culture of circulating tumor cells. PHT. , 220-223 (2013).
  15. Ao, Z., Parasido, E., et al. Thermoresponsive release of viable microfiltrated Circulating Tumor Cells (CTCs) for precision medicine applications. Lab Chip. 15, 4277-4282 (2015).
  16. Xu, T., Lu, B., Tai, Y. C., Goldkorn, A. A cancer detection platform which measures telomerase activity from live circulating tumor cells captured on a microfilter. Cancer Res. 70 (16), 6420-6426 (2010).
  17. Okano, T., Bae, Y. H., Jacobs, H., Kim, S. W. Thermally on-off switching polymers for drug permeation and release. J. Control. Release. 11 (1-3), 255-265 (1990).
  18. Yamada, N., Okano, T., Sakai, H., Karikusa, F., Sawasaki, Y., Sakurai, Y. Thermo-responsive polymeric surfaces; control of attachment and detachment of cultured cells. Die Makromol. Chemie, Rapid Commun. 11 (11), 571-576 (1990).
  19. Deng, Y., Zhang, Y., et al. An integrated microfluidic chip system for single-cell secretion profiling of rare circulating tumor cells. Sci. Rep. 4, 7499 (2014).
  20. Hou, S., Zhao, H., et al. Capture and stimulated release of circulating tumor cells on polymer-grafted silicon nanostructures. Adv. Mater. 25 (11), 1547-1551 (2013).
  21. Xiao, Y., Zhou, H., et al. Effective and selective cell retention and recovery from whole blood by electroactive thin films. ACS Appl. Mater. Interfaces. 6 (23), 20804-20811 (2014).
  22. Wallwiener, M., Hartkopf, A. D., et al. The impact of HER2 phenotype of circulating tumor cells in metastatic breast cancer: a retrospective study in 107 patients. BMC cancer. 15 (1), 403 (2015).

Play Video

Citazione di questo articolo
Rawal, S., Ao, Z., Agarwal, A. Capture and Release of Viable Circulating Tumor Cells from Blood. J. Vis. Exp. (116), e54435, doi:10.3791/54435 (2016).

View Video