Summary

Longitudinal de morfológicas e fisiológicas, monitoramento de esferoides Tumor tridimensional usando a tomografia de coerência óptica

Published: February 09, 2019
doi:

Summary

Tomografia de coerência óptica (OCT), uma tecnologia de imagem tridimensional, foi usada para monitorar e caracterizar a cinética de crescimento de esferoides tumor multicelulares. Precisa quantificação volumétrica de esferoides tumor usando um voxel contando a abordagem e deteção de tecido livre de rótulo morto nos esferoides baseado no contraste intrínseco atenuação óptica, foram demonstradas.

Abstract

Esferoides de tumor foram desenvolvidas como um modelo de cultura tridimensional (3D) célula na descoberta de medicamentos de investigação e anti-câncer de câncer. No entanto, atualmente, elevado-throughput modalidades de imagem utilizando a deteção de campo ou fluorescência brilhante, são incapazes de resolver a estrutura geral 3D do spheroid tumor devido à limitada penetração de luz, difusão de corantes fluorescentes e profundidade-resolução. Recentemente, nosso laboratório demonstrou o uso de tomografia de coerência óptica (OCT), um rótulo livre e não-destrutiva de imagem 3D modalidade, para realizar a caracterização longitudinal de esferoides multicelulares tumor em uma placa de 96 poços. OCT foi capaz de obter informações morfológicas e fisiológicas 3D de esferoides de tumor que cresce até cerca de 600 µm de altura. Neste artigo, vamos demonstrar um sistema de imageamento de OCT (HT-OCT) de alto rendimento que verifica a placa toda multi bem e obtém os dados 3D OCT de esferoides tumor automaticamente. Descrevemos os detalhes das orientações de construção e sistema de HT-OCT no protocolo. A partir dos dados de OCT 3D, se pode visualizar a estrutura geral do spheroid com 3D renderizados e fatias ortogonais, caracterizar a curva de crescimento longitudinal do spheroid tumor baseado na informação morfológica de tamanho e volume e monitorar o crescimento de as regiões de mortos-célula no spheroid tumor baseado no contraste óptico atenuação intrínseca. Mostramos que, HT-OCT pode ser usado como uma modalidade de imagem de alto rendimento para droga triagem, bem como a caracterização de amostras de biofabricated.

Introduction

Câncer é a segunda principal causa de morte no mundo1. Desenvolvimento de medicamentos, alvejando câncer é de importância crucial para os pacientes. No entanto, estima-se que mais de 90% das novas drogas anti-câncer falhar na fase de desenvolvimento devido à falta de eficácia e toxicidade inesperada em ensaios clínicos2. Parte do motivo pode ser atribuída ao uso de modelos de cultura simples bidimensional (2D) célula para triagem composta, que fornecem resultados com valores preditivos limitados de compostos eficácia e toxicidade para as fases seguintes da droga descoberta2 , 3 , 4. recentemente, foram desenvolvidos modelos de esferoide tridimensional (3D) tumor para fornecer dados fisiológicos e farmacológicos clinicamente relevantes para drogas anti-câncer descoberta3,4,5 ,6,7,8,9,10,11,12,13,14, 15,16,17,18,19,20,21,22,23, 24,25. Desde que esses esferoides podem imitar propriedades específicas do tecido de tumores no vivo, como nutrientes e oxigênio núcleo gradiente, hipóxico, bem como drogas resistência19, o uso desses modelos pode potencialmente encurtar cronogramas de descoberta de drogas, reduzir os custos de investimento e trazer novos medicamentos para pacientes mais efetivamente. Uma abordagem crítica para avaliar composta eficácia no desenvolvimento de tumor 3D esferoide é monitorar o crescimento de esferoide e recorrência sob tratamentos9,26. Para fazer isso, caracterizações quantitativas da morfologia do tumor, envolvendo o seu diâmetro e volume, com modalidades de imagem de alta resolução, são imperativas.

Modalidades de imagem convencionais, como campo claro, contraste fase7,9,22,de24e fluorescência microscopia8,9,16, 18,22 pode fornecer uma medida do diâmetro do spheroid, mas não é possível resolver a estrutura geral do spheroid em espaço 3D. Muitos fatores contribuem para essas limitações, incluindo penetração da luz sondagem no spheroid; difusão dos corantes fluorescentes para o spheroid; emitindo sinais fluorescentes de corantes fluorescentes animados no interior ou na superfície oposta do spheroid devido à forte absorção e espalhamento; e profundidade-resolução destas modalidades de imagem. Isto conduz frequentemente a uma medida de volume imprecisas. Desenvolvimento do núcleo necrótico em esferoides imita necrose na vivo tumores6,10,15,19,25. Esta característica patológica é improvável reproduzida na célula 2D culturas19,25,,27,28. Com um tamanho de esferoide superior a 500 µm de diâmetro, uma estrutura de três camadas concêntrica, incluindo uma camada exterior de pilhas proliferating, uma camada intermediária de células quiescentes e um núcleo necrótico, pode ser observado no esferoide6,10 ,15,19,25, devido à falta de oxigênio e nutrientes. Imagem latente da fluorescência de pilha de vivo e morto é a abordagem padrão para rotular o limite do núcleo necrótico. No entanto, outra vez, Penetrações tanto destes corantes fluorescentes e luz visível impedem o potencial para sondar sobre o núcleo necrótico para monitorar seu desenvolvimento em sua forma real.

Uma modalidade de imagem de 3D alternativa, tomografia de coerência óptica (OCT) é introduzida para caracterizar os esferoides de tumor. OCT é uma técnica de imagem biomédica que é capaz de adquirir dados 3D etiqueta-livre, não-destrutiva de até 1-2 mm de profundidade em tecidos biológicos29,30,31,32,33 ,34. OCT emprega interferometria de baixa coerência para detectar sinais espalhados por trás de diferentes profundidades da amostra e fornece imagens reconstruídas profundidade-resolvido em nível de mícron resoluções espaciais nas direções laterais e verticais. OCT foi adotado extensamente em oftalmologia35,36,37 e angiografia38,39. Estudos anteriores têm usado a OCT para observar a morfologia do in vitro esferoides de tumor na matriz da membrana basal (por exemplo, Matrigel) e avaliar suas respostas a terapia fotodinâmica40,41. Recentemente, nosso grupo estabeleceu uma plataforma de imagem da OCT do elevado-throughput para sistematicamente monitorar e quantificar a cinética de crescimento de esferoides tumor 3D em placas multi bem42. Precisa quantificação volumétrica de esferoides tumor 3D usando um voxel contando a abordagem e deteção de tecido necrótico rótulo livre nos esferoides baseado no contraste intrínseco atenuação óptica foram demonstradas. Este artigo descreve os detalhes de como a plataforma de imagem OCT foi construída e utilizada para obter imagens 3D de alta resolução de esferoides de tumor. Os passo a passo análises quantitativas da cinética de crescimento de esferoides tumor 3D, incluindo medições precisas de diâmetro esferoide e volumes, é descrita. Além disso, o método da detecção não-destrutiva de regiões do tecido necrosado usando a OCT, baseado no contraste a atenuação óptica intrínseca é apresentado.

Protocol

1. preparação das células Obter linhas de células de um fornecedor qualificado.Nota: Verifique se as células a partir das linhas de células de interesse podem formar esferoide nos meios de cultura ou com a ajuda de um substrato (matriz de membrana basal como Matrigel). Olhar para a literatura9 ou realizar uma rodada de um pre-experimento de para uma verificação. Descongele as células congeladas, seguindo o procedimento específico fornecido pelo fornecedor linha ce…

Representative Results

Imagem de tomografia computadorizada coerência óptica alto Throughput de esferoides em uma placa de 96 poços A Figura 3 exibe o resultado de HT-OCT digitalização de uma placa de 96 poços com 116 HCT esferoides de tumor no dia 3. A varredura sequencial da placa inteira começa a partir do poço do canto inferior direito (H12). Figura 3B mostra o fluxograma da implemen…

Discussion

Atividade de tumor é altamente relevante para sua estrutura morfológica. Semelhante à curva de crescimento característica de culturas celulares 2D de monitoramento, acompanhamento da curva de crescimento de esferoides tumor 3D é também uma abordagem convencional para caracterizar o comportamento de crescimento a longo prazo do esferoide para linhas celulares diferentes. Notavelmente, nós pode caracterizar a resposta de drogas através da análise de degradação de tumor ou tumor regrowth reflectida diretamente na…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

Este trabalho foi apoiado pela NSF concede IDBR (DBI-1455613), PFI:AIR-TT (PII-1640707), fundo de inicialização do NIH grants Lehigh University, R15EB019704 e R01EB025209 e R21EY026380.

Materials

Custom Spectral Domain OCT imaging system Developed in our lab
Superluminescent Diode (SLD) Thorlabs SLD1325 light source
2×2 single mode fused fiber coupler, 50:50 splitting ratio AC Photonics WP13500202B201
Reference Arm
Lens Tube Thorlabs
Adapter Thorlabs
Collimating Lens Thorlabs AC080-020-C
Focusing Lens Thorlabs
Kinematic Mirror Mount Thorlabs
Mirror Thorlabs
1D Translational Stage Thorlabs
Continuous neutral density filter Thorlabs
Pedestrial Post Thorlabs
Clamping Fork Thorlabs
Sample Arm
Lens Tube Thorlabs
Adapter Thorlabs
Collimating Lens Thorlabs AC080-020-C
Galvanometer Thorlabs
Relay Lens Thorlabs AC254-100-C two Relay lens to make a telescope setup
Triangle Mirror Mount Thorlabs
Mirror Thorlabs
Objective Mitutoyo
Pedestrial Post Thorlabs
Clamping Fork Thorlabs
Polarization Controller Thorlabs
30mm Cage Mount Thorlabs
Cage Rod Thorlabs
Stage
3D motorized translation stage Beijing Mao Feng Optoelectronics Technology Co., Ltd. JTH360XY
2D Tilting Stage
Rotation Stage
Plate Holder 3D printed
Spectrometer
Lens Tube Thorlabs
Adapter Thorlabs
Collimating Lens Thorlabs AC080-020-C
Grating Wasatch G = 1145 lpmm
F-theta Lens Thorlabs FTH-1064-100
InGaAs Line-scan Camera Sensor Unlimited SU1024-LDH2
Name Company Catalog Number Comments
Cell Culture Component
HCT 116 Cell line ATCC CCL-247
Cell Culture Flask SPL Life Sciences 70025
Pipette Fisherbrand 14388100
Pipette tips Sorenson Bioscience 10340
Gibco GlutaMax DMEM Thermo Fisher Scientific 10569044
Fetal Bovine Serum, certified, US origin Thermo Fisher Scientific 16000044
Antibiotic-Antimycotic (100X) Thermo Fisher Scientific 15240062
Corning 96-well Clear Round Bottom Ultra-Low Attachment Microplate Corning 7007
Gibco PBS, pH 7.4 Thermo Fisher Scientific 10010023
Gibco Trypsin-EDTA (0.5%) Thermo Fisher Scientific 15400054
Forma Series II 3110 Water-Jacketed CO2 Incubators Thermo Fisher Scientific 3120
Gloves VWR 89428-750
Parafilm Sigma-Aldrich P7793
Transfer pipets Globe Scientific 138080
Centrifuge Eppendorf 5702 R To centrifuge the 15 mL tube
Centrifuge NUAIRE AWEL CF 48-R To centrifuge the 96-well plate
Microscope Olympus
Name Company Catalog Number Comments
Histology & IHC
Digital slide scanner Leica Aperio AT2 Obtain high-resolution histological images
Histology Service Histowiz Request service for histological and immunohistological staining of tumor spheroid
Name Company Catalog Number Comments
List of Commerical OCTs
SD-OCT system Thorlabs Telesto Series
SD-OCT system Wasatch Photonics WP OCT 1300 nm
Name Company Catalog Number Comments
Software for Data Analyses
Basic Image Analysis NIH ImageJ Fiji also works.
3D Rendering Thermo Fisher Scientific Amira Commercial software. Option 1
3D Rendering Bitplane Imaris Commercial software. Option 2. Used in the protocol
OCT acquisition software custom developed in C++.
Stage Control Beijing Mao Feng Optoelectronics Technology Co., Ltd. MRC_3 Incorporated into the custom OCT acquisition code
OCT processing software custom developed in C++. Utilize GPU. Incorporated into the custom OCT acquisition code.
Morphological and Physiological Analysis custom developed in MATLAB

Riferimenti

  1. Kola, I., Landis, J. Can the pharmaceutical industry reduce attrition rates?. Nature Reviews Drug Discovery. 3 (8), 711-716 (2004).
  2. Breslin, S., O’Driscoll, L. Three-dimensional cell culture: the missing link in drug discovery. Drug Discovery Today. 18, 240-249 (2013).
  3. Hickman, J. A., et al. Three-dimensional models of cancer for pharmacology and cancer cell biology: Capturing tumor complexity in vitro/ex vivo. Biotechnology Journal. 9 (9), 1115-1128 (2014).
  4. Sutherland, R. M. Cell and environment interactions in tumor microregions: the multicell spheroid model. Science. 240 (4849), 177-184 (1988).
  5. Mueller-Klieser, W. Three-dimensional cell cultures: from molecular mechanisms to clinical applications. American Journal of Physiology – Cell Physiology. 273, C1109-C1123 (1997).
  6. Friedrich, J., Seidel, C., Ebner, R., Kunz-Schughart, L. A. Spheroid-based drug screen: considerations and practical approach. Nature Protocols. 4 (3), 309-324 (2009).
  7. Tung, Y. -. C., et al. High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array. The Analyst. 136 (3), 473-478 (2011).
  8. Vinci, M., et al. Advances in establishment and analysis of three-dimensional tumor spheroid-based functional assays for target validation and drug evaluation. BMC biology. 10, 29 (2012).
  9. LaBarbera, D. V., Reid, B. G., Yoo, B. H. The multicellular tumor spheroid model for high-throughput cancer drug discovery. Expert Opinion on Drug Discovery. 7, 819-830 (2012).
  10. Pampaloni, F., Ansari, N., Stelzer, E. H. K. High-resolution deep imaging of live cellular spheroids with light-sheet-based fluorescence microscopy. Cell and Tissue Research. 352, 161-177 (2013).
  11. Lovitt, C. J., Shelper, T. B., Avery, V. M. Miniaturized three-dimensional cancer model for drug evaluation. Assay and Drug Development Technologies. 11 (7), 435-448 (2013).
  12. Wenzel, C., et al. 3D high-content screening for the identification of compounds that target cells in dormant tumor spheroid regions. Experimental Cell Research. 323 (1), 131-143 (2014).
  13. Astashkina, A., Grainger, D. W. Critical analysis of 3-D organoid in vitro cell culture models for high-throughput drug candidate toxicity assessments. Innovative tissue models for drug discovery and development. 69, 1-18 (2014).
  14. Edmondson, R., Broglie, J. J., Adcock, A. F., Yang, L. Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay and Drug Development Technologies. 12 (4), 207-218 (2014).
  15. Gong, X., et al. Generation of multicellular tumor spheroids with microwell-based agarose scaffolds for drug testing. PLoS ONE. 10 (6), e0130348 (2015).
  16. Hoffmann, O. I., et al. Impact of the spheroid model complexity on drug response. Journal of biotechnology. 205, 14-23 (2015).
  17. Martinez, N. J., Titus, S. A., Wagner, A. K., Simeonov, A. High-throughput fluorescence imaging approaches for drug discovery using in vitroand in vivothree-dimensional models. Expert Opinion on Drug Discovery. 10, 1347-1361 (2015).
  18. Nath, S., Devi, G. R. Three-dimensional culture systems in cancer research: Focus on tumor spheroid model. Pharmacology, Therapeutics. 163, 94-108 (2016).
  19. Li, L., Zhou, Q., Voss, T. C., Quick, K. L., LaBarbera, D. V. High-throughput imaging: Focusing in on drug discovery in 3D. Methods. 96, 97-102 (2016).
  20. Ham, S. L., Joshi, R., Thakuri, P. S., Tavana, H. Liquid-based three-dimensional tumor models for cancer research and drug discovery. Experimental Biology and Medicine. 241 (9), 939-954 (2016).
  21. Kessel, S., et al. High-Throughput 3D Tumor Spheroid Screening Method for Cancer Drug Discovery Using Celigo Image Cytometry. Journal of Laboratory Automation. , 2211068216652846 (2016).
  22. Stock, K., et al. Capturing tumor complexity in vitro: Comparative analysis of 2D and 3D tumor models for drug discovery. Scientific Reports. 6, 28951 (2016).
  23. Thakuri, P. S., Ham, S. L., Luker, G. D., Tavana, H. Multiparametric analysis of oncology drug screening with aqueous two-phase tumor spheroids. Molecular Pharmaceutics. 13 (11), 3724-3735 (2016).
  24. Lin, R. Z., Chang, H. Y. Recent advances in three-dimensional multicellular spheroid culture for biomedical research. Biotechnology Journal. 3 (9-10), 1172-1184 (2008).
  25. Piccinini, F., Tesei, A., Arienti, C., Bevilacqua, A. Cancer multicellular spheroids: Volume assessment from a single 2D projection. Computer Methods and Programs in Biomedicine. 118 (2), 95-106 (2015).
  26. Zanoni, M., et al. 3D tumor spheroid models for in vitro therapeutic screening: a systematic approach to enhance the biological relevance of data obtained. Scientific Reports. 6, 19103 (2016).
  27. Debnath, J., Brugge, J. S. Modelling glandular epithelial cancers in three-dimensional cultures. Nature Reviews Cancer. 5 (9), 675-688 (2005).
  28. Huang, D., et al. Optical coherence tomography. Science. 254 (5035), 1178-1181 (1991).
  29. Drexler, W., et al. Optical coherence tomography today: speed, contrast, and multimodality. Journal of Biomedical Optics. 19 (7), 071412 (2014).
  30. Fujimoto, J., Swanson, E. The development, commercialization, and impact of optical coherence tomography. Investigative Ophthalmology, Visual Science. 57 (9), (2016).
  31. Vakoc, B. J., Fukumura, D., Jain, R. K., Bouma, B. E. Cancer imaging by optical coherence tomography: preclinical progress and clinical potential. Nature Reviews Cancer. 12 (5), 363-368 (2012).
  32. Wojtkowski, M. High-speed optical coherence tomography: basics and applications. Applied optics. 49 (16), D30-D61 (2010).
  33. Drexler, W., Fujimoto, J. G. . Optical coherence tomography: technology and applications. , (2008).
  34. Geitzenauer, W., Hitzenberger, C. K., Schmidt-Erfurth, U. M. Retinal optical coherence tomography: past, present and future perspectives. British Journal of Ophthalmology. 95 (2), 171 (2011).
  35. Sakata, L. M., DeLeon-Ortega, J., Sakata, V., Girkin, C. A. Optical coherence tomography of the retina and optic nerve – a review. Clinical, Experimental Ophthalmology. 37 (1), 90-99 (2009).
  36. van Velthoven, M. E. J., Faber, D. J., Verbraak, F. D., van Leeuwen, T. G., de Smet, M. D. Recent developments in optical coherence tomography for imaging the retina. Progress in Retinal and Eye Research. 26 (1), 57-77 (2007).
  37. Kashani, A. H., et al. Optical coherence tomography angiography: A comprehensive review of current methods and clinical applications. Progress in Retinal and Eye Research. 60, 66-100 (2017).
  38. de Carlo, T. E., Romano, A., Waheed, N. K., Duker, J. S. A review of optical coherence tomography angiography (OCTA). International Journal of Retina and Vitreous. 1 (1), 5 (2015).
  39. Sharma, M., Verma, Y., Rao, K. D., Nair, R., Gupta, P. K. Imaging growth dynamics of tumour spheroids using optical coherence tomography. Biotechnology Letters. 29 (2), 273-278 (2006).
  40. Jung, Y., Nichols, A. J., Klein, O. J., Roussakis, E., Evans, C. L. Label-Free, Longitudinal Visualization of PDT Response In Vitro with Optical Coherence Tomography. Israel Journal of Chemistry. 52 (8-9), 728-744 (2012).
  41. Huang, Y., et al. Optical coherence tomography detects necrotic regions and volumetrically quantifies multicellular tumor spheroids. Ricerca sul cancro. 77 (21), 6011-6020 (2017).
  42. Spalteholz, W. . Über das Durchsightigmachen von menschlichen und tierischen Präparaten: nebst Anhang, Über Knochenfärbung. , (1911).
  43. Dodt, H. -. U., et al. Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain. Nature Methods. 4 (4), 331 (2007).
  44. Leitgeb, R., Hitzenberger, C., Fercher, A. F. Performance of fourier domain vs. time domain optical coherence tomography. Optics express. 11 (8), 889-894 (2003).
  45. Jian, Y., Wong, K., Sarunic, M. V. . Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XVII. , 85710Z (2013).
  46. Guizar-Sicairos, M., Thurman, S. T., Fienup, J. R. Efficient subpixel image registration algorithms. Optics Letters. 33 (2), 156-158 (2008).
  47. Canny, J. A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence. (6), 679-698 (1986).
  48. Vermeer, K. A., Mo, J., Weda, J. J. A., Lemij, H. G., de Boer, J. F. Depth-resolved model-based reconstruction of attenuation coefficients in optical coherence tomography. Biomedical Optics Express. 5 (1), 322-337 (2014).
  49. Klein, T., et al. Multi-MHz retinal OCT. Biomedical Optics Express. 4, 1890-1908 (2013).
  50. Klein, T., Huber, R. High-speed OCT light sources and systems [Invited]. Biomedical Optics Express. 8 (2), 828-859 (2017).
  51. Zhou, C., Alex, A., Rasakanthan, J., Ma, Y. Space-division multiplexing optical coherence tomography. Optics Express. 21, 19219-19227 (2013).
check_url/it/59020?article_type=t

Play Video

Citazione di questo articolo
Huang, Y., Zou, J., Badar, M., Liu, J., Shi, W., Wang, S., Guo, Q., Wang, X., Kessel, S., Chan, L. L., Li, P., Liu, Y., Qiu, J., Zhou, C. Longitudinal Morphological and Physiological Monitoring of Three-dimensional Tumor Spheroids Using Optical Coherence Tomography. J. Vis. Exp. (144), e59020, doi:10.3791/59020 (2019).

View Video